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Figure 1: Frames from a sequence where water is poured on a lumpy board.

Abstract
In this paper, we present a point-based method for animating incompressible flow. The advection term is handled
by moving the sample points through the flow in a Lagrangian fashion. However, unlike most previous approaches,
the pressure term is handled by performing a projection onto a divergence-free field. To perform the pressure pro-
jection, we compute a Voronoi diagram with the sample points as input. Borrowing from Finite Volume Methods,
we then invoke the divergence theorem and ensure that each Voronoi cell is divergence free. To handle complex
boundary conditions, Voronoi cells are clipped against obstacle boundaries and free surfaces. The method is sta-
ble, flexible and combines many of the desirable features of point-based and grid-based methods. We demonstrate
our approach on several examples of splashing and streaming liquid and swirling smoke.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—Animation.
[Fluid simulation, incompressible flow, Voronoi diagram, point-based simulation, natural phenomena, physically
based animation, computational fluid dynamics.]

1. Introduction

Over the last decade, fluid simulation has emerged as an
important tool in computer animation. The seminal work
of Foster and Metaxas [FM96] introduced Eulerian grid-
based techniques for solving the Navier-Stokes equations
that govern fluid flow. While grid-based techniques have
remained popular, Lagrangian point-based techniques have
been receiving increasing attention. With a few notable ex-
ceptions these techniques have been based on the Smooth
Particle Hydrodynamics (SPH) methods originally devel-
oped for astrophysics applications [GM77]. SPH was sug-

gested for computer graphics applications by Desbrun and
Cani [DC96] and Müller and colleagues [MCG03] demon-
strated the method’s utility for interactive fluid simulation.

One of the drawbacks of the SPH methods commonly
used in graphics is that they model compressible flows. This
limitation requires users to find the right balance between
timestep, pressure force stiffness, and acceptable “bounci-
ness.”

In this paper, we present a point-based method for incom-
pressible flow. While maintaining the Lagrangian solution to
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Figure 2: Fluid is sprayed against a wall and falls down
some stairs.

the advection term, we include a Poisson solve to ensure that
the velocity field is divergence free. The Poisson solve is car-
ried out using a Voronoi diagram that is built every timestep
using the points as the Voronoi sites. This Voronoi diagram
is then clipped against both obstacle and free-surface bound-
aries, allowing for accurate handling of arbitrary boundaries.
Additionally, moving least-squares methods are used to in-
terpolate simulation variables stored at the sample points.
Our method strikes a balance between grid-based and SPH
methods allowing for incompressible animations of liquids
while being able to represent small scale details and features.
Moreover, our method avoids the numerical damping as-
sociated with semi-Lagrangian advection and handles hard,
sharp boundary conditions in a unified way, without having
to rely on boundary particles or other ad hoc solutions. Thus,
our method is most competitive for animations of splashing
and streaming liquids where grid-based methods are unable
to resolve thin features and suffer from excessive damping
and SPH methods can require small timesteps to avoid oscil-
lations and large pressure forces. Our method is also able to
animate swirling smoke with millions of trace particles with-
out the numerical damping of semi-Lagrangian or Eulerian
advection schemes or the oscillating velocity fields defined
by SPH smoothing kernels.

2. Related Work

Foster and Metaxas [FM96] first demonstrated the ability of
Eulerian grid-based methods to generate very compelling
animations of fluids. Semi-Lagrangian advection [Sta99]
notwithstanding, this Eulerian fixed-grid approach dom-
inated computer graphics fluid simulation for nearly a
decade. Although Desbrun and Cani [DC96] introduced
SPH techniques for computer animation and Stora and
colleagues [SAC∗99] used SPH to animate lava flows,
it was the work of Müller and colleagues [MCG03]
and Premoze and colleagues [PTB∗03] that demonstrated
the viability of point-based Lagrangian methods for gen-
eral fluid simulations. In particular, Müller and col-

leagues [MCG03] showed that SPH could produce com-
pelling fluid simulations at interactive rates which led to
a large body of follow-on work. Researchers have used
SPH to model such phenomena as viscoelasticity [CBP05],
solid-fluid coupling [MST∗04, KAG∗05, SSP07], fluid-fluid
interaction [MSKG05, SP08], fluid control [TKPR06],
rivers [KW06], weakly compressible flow [BT07], bubbling
and frothing liquids [CPPK07], and porous flow [LAD08].
Adams and colleagues [APKG07] demonstrated adaptive
sampling in SPH simulations and Hegeman and col-
leagues [HCM06] and Harada and colleagues [HKK07]
demonstrated SPH simulations on GPUs. More recently,
Zhang and colleagues [ZSP08] performed adaptive SPH
simulations on the GPU.

While much of the work on point-based methods have fo-
cused on modeling compressible flows, there has been some
work that has targeted incompressible fluids. Inspired by the
work of Koshizuka and colleagues [KTO96], Premoze and
colleagues [PTB∗03] used the moving-particle semi-implicit
method to simulate incompressible flow. Furthermore, in
the computational physics literature, researchers have de-
veloped SPH methods that incorporate pressure projec-
tions [CR99, Sha05, CEL06]. As in our approach, these
methods include a global pressure projection to ensure in-
compressibility, but they differ substantially in how the Pois-
son solve is carried out. While we use a Voronoi diagram to
determine the interactions between particles, these methods
perform the solve on the particles themselves and handle ob-
stacles with special obstacle particles. In our experience, it
is difficult to enforce hard, sharp boundary conditions with
obstacle particles. Enforcing such sharp boundary condi-
tions is our primary motivation for using the background
Voronoi diagram. Hu and Adams [HA07] describe an ap-
proach that solves the Poisson equation on the particles, but
handles the boundary conditions in the pressure projection.
However, in their approach, standard von Neumann bound-
ary conditions led to small fluctuations in particle pressure
and, consequently, velocity. Researchers have used finite
volume methods with Voronoi diagrams [TAK91, dVM04].
However, these approaches used fixed grids and different
differential operators than those presented here. Yet another
approach to incompressible SPH was suggested by Ellero
and colleagues [ESE07] and relies on Lagrange multipliers.
Most recently, Solenthaler and Pajarola [SP09] describe a
method that uses a relaxation technique to achieve a target
density, greatly reducing pressure oscillations in SPH simu-
lations. While our approach is able to achieve a greater de-
gree of incompressibility, their approach, by maintaining the
number of particles, exactly preserves mass over time.

Until recently, one of the greatest advantages of point-
based simulation techniques was their ability to handle com-
plicated boundaries without the voxelization artifacts com-
monly found in grid-based techniques. However, the recent
work on cut cells by Roble and colleagues [RbZF05] and
the approach of Batty and colleagues [BBB07] seem to have
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Figure 3: An overview of our method: (a) We begin with a set of sample points that store velocity field samples. (b) We build
a Voronoi diagram (the purple sites are added to ensure closed cells around sample points). (c) We define a free surface as the
union of spheres around the sample points and (d) clip the Voronoi diagram against this surface. We then perform a pressure
projection to generate (e) a divergence-free velocity field. Finally, we advect the sample points through the velocity field (f).

improved the ability of grid-based techniques to handle com-
plicated boundaries. Like our approach, cut cells leverage
the divergence theorem to deal with arbitrary boundaries.
Johansen and Colella [JC98] similarly used finite volume
methods to handle irregular domains. However, their ap-
proach arrives at a non-symmetric system that is solved with
multi-grid techniques. Losasso and colleagues [LGF04] also
invoked the divergence theorem when developing the diver-
gence operator for their octree simulation method.

To address several of the drawbacks of SPH, researchers
have enhanced the method with moving least-squares tech-
niques [Dil99]. Brownlee and colleagues [BHLR07] used
both moving least-squares and radial basis functions. As
pointed out by Belytschko and colleagues [BKO∗96], SPH
methods are not consistent. That is, SPH methods do not
converge to the continuous solution as the timestep goes to
zero and the number of particles goes to infinity. Moving
least-squares methods are able to overcome this limitation.
Initially, the goal of our project was to adapt such moving
least-squares methods for computer animation. After our at-
tempts to use boundary particles and incorporating bound-
ary conditions into the moving least-squares solve [KT01]
failed to handle sharp boundary conditions, we settled on
using Voronoi diagrams and the divergence theorem. This
approach has the additional advantage of producing a sym-
metric linear system, while moving least-squares based ap-
proaches do not.

Our work is also closely related to other approaches
that use both particles and a background grid. Zhu and
Bridson [ZB05] combined the hybrid fluid-implicit-particle
(FLIP) [BR86] and particle-in-cell (PIC) [HW65] meth-
ods to animate sand as well as fluids. Losasso and col-
leagues [LTKF08] coupled a particle level-set grid-based
method to a particle method that closely resembles FLIP
and Hong and colleagues [HHK08] developed an adaptive
FLIP method. In all these methods, a large number of par-
ticles are use to simulate the fluid. Unlike SPH, these par-
ticles do not interact directly, rather, they interact indirectly
through a background grid. In this way, such methods lever-
age the excellent ability of Lagrangian methods to solve
the advection term in the Navier-Stokes method, while us-

ing the background grid to enforce incompressibility. In its
pure form, FLIP is largely unable to remove noise from the
velocity field, while PIC is excessively damped. Thus, the
two approaches are often combined, resulting in a balanced
method. While our approach also solves the advection term
by moving the particles and takes advantage of a background
grid to enforce incompressibility, because we only have a
single particle per background grid-cell, our particles have
more direct interaction with each other. As in SPH, our pres-
sure forces act on neighboring particles directly.

Our approach is also closely related to the work of Feld-
man and colleagues [FOK05, FOKG05] Klingner and
colleagues [KFCO06], and Chentanez and col-
leagues [CFL∗07]. These authors have explored the
use of tetrahedral methods for fluid simulation and have
allowed both deforming meshes and the complete con-
struction of new meshes to adapt to changing boundary
conditions. Our work also allows for moving points and
requires the construction of a new Voronoi diagram every
timestep. We also borrow some of their approximations,
such as their approach to calculating gradients on faces
in the mesh. Compared to methods that use regular grids,
these tetrahedral approaches accept reduced accuracy in
exchange for flexibility in mesh structure. Our approach
makes a similar tradeoff. A primary advantage of our
work over these approaches is that we are able to avoid
the numerical damping caused by repeated interpolation
during semi-Lagrangian advection. We also note that Elcott
and colleagues [ETK∗07] performed incompressible fluid
simulations on unstructured grids. However, their approach
did not involve a pressure projection. Also, related is the
particle finite element method developed by Oñate and
colleagues [OIPA04] to solve fluid-structure interaction
problems. Like ours, their approach is particle based and
builds a mesh every timestep to solve the fluid equations.
However, they use the Delaunay triangulation and the finite
element method while we use the Voronoi diagram and a
finite volume approach.
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Figure 4: Liquid is dropped on a model of a bear.

3. Method

The Navier-Stokes equations model incompressible flow. Ig-
noring viscosity, we arrive at the Euler equations,

∂u
∂t

=−(u ·∇)u−∇p (1)

∇·u = 0, (2)

where u is velocity, p is pressure, and ∇ denotes the gra-
dient (∂/∂x,∂/∂y,∂/∂z)T . As is commonly done in graph-
ics we solve for the advection and pressure terms separately.
Figure 3 gives an overview of our method. Given our sam-
ple points, we first build a Voronoi diagram. Second, we
clip the Voronoi diagram against obstacles and the liquid
surface. Third, we solve a Poisson equation to generate a
divergence-free velocity field. Fourth, we advect the sample
points through this velocity field. We now describe each of
these steps in detail.

3.1. Computing the Voronoi Diagram

The Voronoi diagram is a well-studied decomposition of
space. Given a set of sites, the Voronoi diagram decomposes
space into a set of cells. All points inside a cell are nearer
to the site in their cell than to any other site. In three di-
mensions, cell boundaries are composed of convex polygons
usually termed facets. Facets meet at edges and edges meet
at points.

We use Voronoi diagrams to divide space into regions be-
longing to a particular sample point. The Voronoi diagram
is a natural choice because each point in a Voronoi cell will
be nearer the sample point for its cell than any other sample
point. Our system uses the qhull package [BDH96] to com-
pute Voronoi diagrams. The input includes all of our sam-
ple points. To deal with our experience that some infinite
facets may not be returned by qhull, we also include a num-
ber of points far away from the fluid domain to ensure that

all Voronoi cells corresponding to sample points are closed
(and the facets finite).

3.2. Clipping the Voronoi Diagram

One of the advantages of using the Voronoi diagram is that
it allows us to handle complex boundaries by clipping the
Voronoi cells against obstacle boundaries and free surfaces.
The resulting decomposition is sometimes referred to as the
restricted Voronoi diagram. To ensure that facets in the re-
stricted diagram align with obstacle boundaries, cells are
clipped against obstacles before being clipped against free
surfaces.

The basic idea behind our clipping algorithm is to find
intersections between obstacles or free surfaces and edges
in the Voronoi diagrams. These intersection points are then
connected to create a new closed cell. Therefore, we do not
exactly represent obstacle geometry, but approximate it in
a way similar to marching cubes [LC87]. While it should
be possible to clip the Voronoi diagram against geometry
of arbitrary complexity, this piecewise linear approximation
is at the same scale as the simulation and has worked well
in practice. After constructing the Voronoi diagram, each
Voronoi vertex is examined to see whether it is inside an ob-
stacle and accordingly marked. Then, all Voronoi cells are
examined and any cell that has vertices inside an obstacle
is clipped. The intersection with the obstacle is found along
each edge that has one vertex inside the obstacle and one
outside. These new vertices are then joined together. First
vertices that share a facet are joined together in pairs. Then
all vertices are joined to a new average vertex located at the
average location of the new vertices. Occasionally, a bound-
ary will pass through a Voronoi cell twice (i.e cutting off op-
posite corners). In this case, we introduce multiple average
vertices at the average locations of new vertices in different
connected components.

During simulation, the surface is represented as a union of
spheres, as suggested by Batty [Bat08]. To simplify finding
intersections of the surface with Voronoi edges, we use an
implicit representation—a function that finds the distance to
the nearest sample point and subtracts off a user-specified ra-
dius. While this function is not a signed-distance function (it
may under estimate values inside the surface), it does give
the correct sign and it’s zero-set lies on the surface. While
this simple representation is unacceptable for rendering, it
is surprisingly effective at representing the surface during
simulation and for clipping the Voronoi cells. It also avoids
many of the problems that more advanced surface track-
ing methods encounter. Clipping against this surface follows
the same procedure outlined above. A boundary case occurs
when all the Voronoi vertices for a particular cell are out-
side the liquid. In this case, we let the sample point follow a
ballistic trajectory with its velocity initialized by a constant
moving least-squares fit.
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3.3. Pressure Projection

Following the standard approach for incompressible fluids,
we couple the pressure term to the divergence in Equa-
tion (2) and solve the resulting Poisson equation

∇2 p =∇·u∗, (3)

where u∗ is the velocity field after advection and applying
external forces. Because our cells vary in volume and we
wish to give cells with larger volume greater weight we mul-
tiply Equation (3) by the cell’s volume, V †:

V∇2 p = V∇·u∗. (4)

Solving Equation (4) requires that we define both Laplacian
and divergence operators.

The Laplacian of the pressure is computed in a two step
process. First pressure gradients are computed on all Voronoi
facets. Following Feldman and colleagues [FOK05], only
the pressure gradient component that is normal to the facet
is computed. Thus for a facet between points i and j we have

(n̂ ·∇p) =
p j − pi

‖x j −xi‖+ ε
, (5)

where n̂ is the unit normal of the facet and pi and p j are the
pressures at points i and j, respectively. The ε in the denom-
inator avoids numerical problems when sample points may
be near the Voronoi facet. Of course, it is possible that the
line between sample points i and j does not pass through
the facet between the associated cells, but we have not found
this to be a problem in practice.

We then assume that the normal component of the pres-
sure is constant over the facet and apply the divergence the-
orem to get

V∇2 p = ∑
f∈facets

a f (n̂ ·∇p), (6)

where a f is the area of the facet. Conveniently, this for-
mulation leads to a sparse, symmetric linear system that is
solved to a user-specified tolerance using a conjugate gradi-
ent method without ever explicitly constructing the matrix.
Our current implementation uses a Jacobi preconditioner
for its simplicity, though a better preconditioner or solution
method would likely lead to improved performance. We en-
sure that our system stays well conditioned by removing par-
ticles that get closer than a user-specified threshold and by
disallowing interactions between particles that are very far
apart (in terms of the radius used to define the free surface).

To compute the divergence of the velocity field, first
a constant moving least-squares fit of the velocity field
(see Equation (12)) is performed at the centroid of every
Voronoi facet. We then assume that this velocity is constant

† While scaling a single row of the linear system would have no
effect if we were performing an exact solve, it does give the row
greater weight in our iterative solution.

over the facet and again invoke the divergence theorem to
get the volume-weighted divergence over the Voronoi cell.

V∇·u = ∑
f∈facets

a f (n̂ ·u). (7)

After solving for the pressure field, we need to compute
its gradient to update our intermediate velocities, u∗. The
pressure field, like the velocity, is stored at the sample points.
However, in this case we need the entire gradient not just the
divergence so we cannot simply interpolate to facet centroids
and apply the divergence theorem. Instead a linear moving
least-squares fit to the pressure field is performed at each
sample point and the gradient is given by the linear terms.
More specifically, for sample point xi, we let,

Xi =


w1 w1x1 w1y1 w1z1
w2 w2x2 w2y2 w2z2

...
wk wkxk wkyk wkzk

 , (8)

where w j = w(x j −xi) and x j = (x j,y j,z j)T . Xi is a matrix
of neighbor’s positions weighted by an appropriate kernel
(see Equation (13)). We then solve for (p0, px, py, pz)T in
the normal equations,

XT
i Xi


p0
px
py
pz

 = XT
i


p1
p2
...

pk

 , (9)

Solving Equation (9) only requires inverting a 4x4 matrix.
The gradient is then extracted,

∇p =

 px
py
pz

 . (10)

For the boundary facets, we apply the usual free-slip
boundary conditions. Obstacle facets have (n̂ ·∇p) = 0. This
condition is enforced by setting (n̂ · ∇p) = 0 on obstacle
facets when computing ∇2 p. Additionally, obstacle facets
are assigned the velocity of the obstacle instead of the usual
moving least-squares estimate when computing divergence.
To enforce p = pa on the air side of free surface facets,
(n̂ ·∇p) is computed on air facets as,

(n̂ ·∇p) =
pi− pa

2(xi−x f ) · n̂
, (11)

where pi is the pressure of the sample point on the liq-
uid side of the facet, pa is atmospheric pressure, and x f is
the position of the facet centroid. Finally, the condition that
∇u · n̂ = 0 on air facets is enforced automatically because
the moving least-squares estimate only uses points inside the
liquid.
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Figure 5: Smoke being blown on a bear model.

3.4. Advection

The advection term in Equation (1) is handled in our system
by moving the sample points through the flow. Although the
velocity field is sampled at these points, unlike most SPH
implementations, we do not move them with these veloci-
ties. Instead, we perform a constant moving least-squares fit
to the velocities sampled at nearby points. We take this ap-
proach so that the particles move through a velocity field that
is continuously defined over all of space, without any un-
necessary fluctuations. We can use this velocity field to per-
form second-order advection or to trace marker particles for
animating smoke. While this approach does introduce some
damping compared to moving the particles with their sam-
pled velocity, it is important to note that the particle’s stored
velocity is not affected. Thus unlike semi-Lagrangian tech-
niques, the smoothing does not build up over time. We also
note that many other methods use smoothed velocities for
advection (e.g. FLIP). More specifically, the velocity we use
to advect the point, û, is computed as

û =
∑ j u j ·w(xi−x j)

∑ j w(xi−x j)
, (12)

where u j is the velocity stored at point j, x j is the position
of point j, and w(·) is a reasonable weighting function with
compact support. In our implementation, we use the quartic
spline suggested by Belytschko and colleagues [BKO∗96]:

w(s̄) =

{
1−6s̄2 +8s̄3−3s̄4 for s̄ ≤ 1,

0 for s̄ > 1.
(13)

Our implementation uses a kd-tree to look up the nearest
n neighbors, subject to a maximum distance. This approach,
which is also employed in the open source SPH code written
by Adams and colleagues [APKG07], avoids the dramati-
cally varying numbers of neighbors that occur if a constant
lookup radius is used. Such variations require large amounts

Figure 7: A frame from a splash sequence.

of computation for some particles to ensure that other par-
ticles have enough neighbors to make reasonable estimates.
Distances provided to the weighting function are then nor-
malized by the distance to the farthest neighbor. To avoid
interactions between disconnected regions of fluid we only
consider particles to be neighbors if they are in the same
connected component of the Voronoi diagram. Two Voronoi
cells are in the same connected component if there is a
path between them that only passes through original Voronoi
facets (i.e. the path does not pass through a facet inserted
when clipping against obstacles or the free surface). This re-
striction avoids some artifacts when distinct bits of fluid ap-
proach each other and is applied not just during advection,
but during all neighborhood lookups. Finally, note that par-
ticles always have at least one neighbor—themselves. With
only one neighbor, the particle will follow a ballistic path.
Particles that enter an obstacle are projected onto the obsta-
cle’s surface.

4. Results

Figure 1 shows frames from an animation of fast moving
liquid being poured on a lumpy board. Our method is able
to resolve the resulting thin sheets and high velocity motion
while taking only four timesteps per frame. Figure 2 shows
a similar example where a fast moving liquid is sprayed at
a wall and then runs down some stairs. Both these exam-
ples would be difficult to create with standard fluid sim-
ulation techniques. Figure 4 shows liquid interacting with
a bear model. This example tests our ability to clip the
Voronoi diagram against a complex boundary and maintain a
divergence-free velocity field. Figure 5 shows a frame from
an animation where smoke is blown on a bear model. Mil-
lions of trace particles were advected through the velocty
field for rendering, demonstrating the smoothness of the
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k_p = 1,100,000 k_p = 4,500,000 k_p = 84,500,000 Our Method

Figure 6: Comparing our approach to SPH. SPH is sensitive to the choice of pressure constant and must settle into a lattice
structure. Our method does not require tuning a pressure constant and is not particularly sensitive to the configuration of the
sample points. With SPH, different pressure constants lead to different amounts of resulting volume. In contrast, our approach
maintains the initial volume.

Figure Timestep(ms) Particles Sec/Step
Fig. 1 8.33 34,462 70
Fig. 2 8.33 32,952 30
Fig. 4 4.16 13,078 6
Fig. 5 4.16 35,342 17
Fig. 7 4.16 100,671 70
Fig. 6 (far right) 4.00 12,152 8

Table 1: Timing results for the examples in this paper.

MLS velocity field. Figure 7 shows a frame from a splash
simulated with our method. In this example enforcing in-
compressibility keeps the liquid from demonstrating pres-
sure oscillations. Furthermore, due to the low level of nu-
merical damping the liquid remains active over long periods
of time. Finally, we compare our approach to the open source
SPH code written by Adams and colleagues [APKG07]
(see Figure 6). We test three different pressure constants and
note that each leads to varying amounts of volume loss and
requires time to settle, while our method resists gravity and
remains motionless.

Timing results for our examples are summarized in Ta-
ble 1. Because the computation time varies substantially over
the coarse of an animation, we report the time required for
a particular, representative step. For example, in the anima-
tion of the lumpy board, as particles are added above the
board, particles far below the board are deleted. The tim-
ing information is for a timestep after the number of parti-
cles has stabilized. As an optimization, when particles are
far from other particles and unlikely to have significant in-
teractions, they simply follow ballistic trajectories. This op-
timization explains the difference in speed between Figure 1
and Figure 2. In the comparison with SPH, our method took
timesteps twenty times larger than the SPH simulator. How-
ever, the SPH simulator’s steps were much faster and, over-
all, it generated frames eight times faster than our simulator.

We performed some rough profiling to determine the most
expensive components of our simulator. Computing and
clipping the Voronoi diagram was particularly expensive,
requiring between 42% and 87% of the computation time,
depending on the example. The splash and smoky bear ex-
amples spent smaller percentages of their computation time

computing the restricted Voronoi diagram and examples like
the board and spray required larger percentages. There was
also significant variance in the proportion of time spent con-
structing the diagram versus clipping the diagram, but con-
struction usually dominated. Not surprisingly, solving the
Poisson equation generally took about 10% of the computa-
tion time. Perhaps surprisingly, computing divergence often
takes more time than solving the Poisson equation. These
slow divergence calculations appear to be due to overuse of
pointers and a consequent lack of cache coherence.

During simulation, we represent the liquid surfaces as
a union of spheres, however this surface is unaccept-
able for rendering convincing animations. Generating sur-
faces from particle data is an open and difficult problem
and a number of authors have proposed solutions includ-
ing Blinn [Bli82], Müller and colleagues [MCG03], Pre-
moze and colleagues [PTB∗03], Zhu and Bridson [ZB05],
and Adams and colleagues [APKG07]. In this work
we used an implementation of the method proposed by
Williams [Wil08]. While this approach works quite well for
fast moving liquids, when the liquid is stationary it tends to
introduce high-frequency temporal flickering of the surface
(that is exacerbated by reflection maps). For this reason, a
level-set based variation of this technique was used for the
animations depicted in Figure 6.

5. Discussion

There are many avenues for future work. Many of the en-
hancements that have been applied to SPH methods, such
as adaptive sampling, two-way coupling with rigid and de-
formable bodies, multiphase flow, and viscoelasticity re-
main to be explored. Among these, adaptive sampling seems
the most useful. Our current implementation performs only
very limited adaptive sampling, removing sample points that
are very close together to maintain a well-conditioned lin-
ear system for the Poisson solve and avoid other numerical
problems. Consequently, we probably cannot run arbitrarily
long simulations with our current implementation. We be-
lieve a method similar to that developed by Adams and col-
leagues [APKG07] could be used in our system. Another
interesting avenue for future work would be to avoid kd-
tree queries all together and use the Voronoi diagram to find
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nearby neighbors. We would also like to explore kinetic De-
launay/Voronoi methods (e.g. [SMH04]) as these may pro-
vide substantial performance improvements. It would also be
interesting to consider replacing our moving least squares
estimates with barycentric interpolation on the Delaunay
triangulation—the dual of our Voronoi diagram. Another in-
teresting area of future work would be enforcing no-slip
boundary conditions. One approach would be to introduce
ghost particles at the center of boundary facets with zero ve-
locity. Alternatively, we could set the velocity of particles
with boundary facets to zero.

As noted in Section 3.3 our pressures and velocities are
collocated at the sample points. It is well known that colloca-
tion can lead to numerical problems in methods that employ
regular grids. The non-regularity of our sample points prob-
ably serves to mitigate these problems, but if they were to
become noticeable we could switch to an upwinding scheme
or introduce an explicit filtering step.

We note that the number of particles is far below the num-
ber of particles typically found in FLIP and SPH simulations
and even lower than the number of cells in a typical hexahe-
dral grid simulation. Part of the reason for this disparity is
computation time. While in FLIP particles do not interact
directly and in SPH particles interact only in a local neigh-
borhood, in our simulations a global linear system is solved
for all particles, at much greater cost per particle. Second,
though our particles are computationally more expensive,
in our experience less of them are necessary than in other
techniques. For example, high resolution hexahedral grids
are often used to avoid numerical damping in the advection
step, but our advection step already has very little numeri-
cal smoothing. While adding more particles provides more
detail, in our experiments with greater numbers of particles,
the improvement in visual quality did not seem to justify the
larger computation times.

We believe that our method offers some appealing ad-
vantages over SPH and grid-based methods. We’ve already
mentioned that our approach can model incompressible flu-
ids, while SPH is limited to compressible flow. Additionally,
most SPH implementations in graphics use different smooth-
ing kernels for different terms in the Navier-Stokes equa-
tions, implying that the choice of kernel has a significant
impact on the method. In contrast, our approach uses only
a single kernel for all scattered data interpolation and is not
particularly sensitive to this choice. Furthermore, we note
that the SPH kernels oscillate between sample points, pre-
venting such kernels from accurately representing constant
velocity fields away from the sample points. On the other
hand, moving least-squares methods are able to represent ar-
bitrary polynomial vector fields. In comparison to grid-based
methods, our approach offers greater flexibility in represent-
ing boundary conditions, the ability to track thin features
using Lagrangian sample points, and avoids the numerical
damping associated with semi-Lagrangian advection.
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