
To appear in ACM TOG ().

Fast Simulation of Mass-Spring Systems

Tiantian Liu
University of Pennsylvania

Adam W. Bargteil
University of Utah

James F. O’Brien
University of California, Berkeley

Ladislav Kavan
University of Pennsylvania

Our Method
10 iterations/frame (50ms/frame)

Exact Solution
Newton’s Method (13s/frame)

Figure 1: We propose a method for fast approximate time integration of dynamic mass-spring systems. For example, our cloth model with 6561
vertices simulates in real-time on a single CPU core with quality comparable to off-line techniques.

Abstract

Mass-spring systems are a classical and popular approach to model
the dynamics of deformable objects. A common approach to time
integration is implicit Euler method, with numerical solution com-
puted using Newton’s iteration. We propose a different numerical
procedure to solve implicit Euler time stepping. Our method con-
verges to the same result as Newton’s method, but the involved
linear systems do not depend on the current state and therefore per-
mit pre-factorization, resulting in very fast iterations. Our method
can produce visually pleasing simulations at a fraction of the time
required by a single iteration of Newton’s method, which is attractive
especially for real-time applications. As an example, we demon-
strate real-time cloth with quality comparable to off-line simulations.
Our technique can also be beneficial in pre-production by providing
quick simulation previews before committing resources to a fully
accurate simulation. When exact results are required, our algorithm
is useful to compute a good starting point for Newton’s iteration.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation

Keywords: Time integration, implicit Euler method, mass-spring
systems.

1 Introduction

Numerical time integration of stiff deformable objects is a challeng-
ing problem. Mass-spring systems are a simple yet practical tool to
model a large variety of objects, such as cloth, hair, or deformable
solids. However, even very simple mass-spring systems often result
in difficult numerical problems, because the stiffness of each spring
typically needs to be relatively high to avoid “bouncy” behavior.
Explicit time integration methods are fast but not sufficiently ro-
bust. Traditional methods for implicit integration [?] require solving
sparse linear systems. This limits their applicability in real-time

applications (e.g., games) and slows down production workflows in
off-line settings (e.g., film and visual effects).

In this paper, we consider a standard mass-spring system with spring
forces governed by the Hooke’s law. We consider the optimization
formulation of implicit Euler [?], where time-stepping is cast as
a minimization problem. Our method works very well with large
timesteps, all our examples assume a fixed timestep correspond-
ing to the framerate, i.e., h = 0.033s. In contrast to the traditional
solution employing Newton’s method, we reformulate this minimiza-
tion problem by introducing auxiliary variables (spring directions).
This allows us to apply a block coordinate descent method which
alternates between finding optimal spring directions (local step) and
stitching the springs together (global step). In the global step, we
solve a linear system. The matrix of our linear system is independent
of the current state, which allows us to benefit from pre-computed
sparse Cholesky factorization.

Newton’s method is known for its excellent convergence properties.
When the iterates are sufficiently close to the optimum, Newton’s
method exhibits quadratic convergence, unlike block coordinate de-
scent. However, each iteration of Newton’s method requires solving
a linear system which changes from one timestep to another. This
is computationally expensive, and therefore previous techniques
[?] do not iterate until convergence, but apply only one iteration
of Newton’s method. This is justified by the fact that computer
animation does not demand physically accurate, but only physically
plausible results. Our goal is to provide artists with fast and practical
tools to achieve the desired effects, not to resolve time integration to
machine-precision accuracy.

In this light, we believe that our method will be appreciated in
physics-based animation, because it can compute visually plausible
results very quickly. In fact, our technique obtains useful approxi-
mate solutions in a fraction of the time required even for one iteration
of Newton’s method. Such functionality is difficult to achieve other-
wise because early termination of conjugate gradients may produce
unreliable descent directions due to the fact that conjugate gradients
do not reduce the error smoothly [?]. The ability to compute fast
yet stable simulations is critical in real-time applications, where

1

To appear in ACM TOG ().

speed is much more important than accuracy. Our method can be
also practical in pre-production for film and visual effects, where it
would enable fast simulation preview without relying on simplified
deformation models or coarse resolution. If exact solution is desired,
our method can also be useful as a way to produce good starting
point for Newton’s method, because its initial convergence speed
often outperforms the damped Newton phase.

2 Related Work

Mass-spring systems are conceptually simpler and easier to deploy
than more rigorous models derived from continuum mechanics us-
ing the finite element method [?]. In contrast to scientific comput-
ing, highly accurate material modeling is typically not necessary
in physics-based animation. Mass-spring systems are widely used
especially with one and two-dimensional structures, such as hair [?]
and cloth models [?], but find their applications also in the realm
of elastic solids [?]. For a more detailed discussion we refer to the
survey by Nealen et al. [?].

Regardless of whether we choose mass-spring systems or continuum
mechanics-based models, a numerical time integration technique
is necessary to simulate the system dynamics. The most straight-
forward integration methods are explicit, such as explicit Euler [?].
For the purposes of physics-based animation, explicit methods are
often not sufficiently robust. Seminal works [?; ?] introduced the
implicit Euler method which offers robustness even for stiff systems
and large timesteps. Unfortunately, the traditional numerical solu-
tion of implicit Euler employs Newton’s method, which requires
the solution of a sparse linear system at each timestep. The system
matrix changes as the system evolves, which typically precludes
pre-factorization in direct linear solvers [?]. Recently, Hecht et
al. [?] proposed scheduled updates of Cholesky factors, trading off
accuracy of the Hessian for its more efficient amortized evaluation.
In contrast to [?], our system matrix is fully state-independent which
allows us to completely rely on the pre-computed factorization as
long as the system parameters and connectivity remain constant.

Symplectic integrators [?; ?] are known for their superior energy
conservation properties. A related time-stepping strategy involves
the combination of implicit and explicit methods (IMEX) [?; ?].
However, damping is often desirable for visually pleasing simula-
tions and many recent methods continue to rely on the implicit Euler
method [?; ?]. A recently proposed technique that allows for a more
direct control of damping is energy budgeting [?]. Energy budgeting
can be applied on top of any numerical time integration method –
ours is no exception.

An interesting alternative to classical force-based physics is Posi-
tion Based Dynamics (PBD) [?]. Due to its robustness, speed, and
simplicity, PBD became very popular in the game and visual effects
industries. The spring projection concept of PBD is found also in
the Nucleus system [?] and is also closely related to strain limit-
ing [?; ?; ?; ?]. PBD presents certain trade-offs by departing from
the traditional elasticity models and relying on heuristic constraint
projection, which utilizes parameters incompatible with standard
models. Another issue is that the resulting stiffness of the simulated
material depends on the number of PBD constraint projection itera-
tions. In contrast, our method uses classical Hookean springs and
converges to the exact implicit Euler solution.

Physics-based simulation is computationally expensive, especially
for high-resolution models rich in detail. This complicates work-
flows e.g. in feature film and visual effects – achieving the de-
sired behavior may be tedious, because changing parameters and
re-simulating is time consuming. This problem was addressed by
Bergou et al. [?], who proposed to work with coarse, fast simula-
tions until the desired behavior was achieved, and only then commit

computational resources to high-resolution simulation that attempts
to mimic (track) the coarse one. The trade-offs are that 1) an auxil-
iary coarse version of the model has to be developed and tuned and
2) the tracking process may compromise the visual fidelity of the
final high-resolution simulation. Our method enables fast previews
directly with the high-resolution models.

3 Background and Notation

For didactic purposes, this section recapitulates the basic principles
and derives the optimization formulation of implicit Euler. We
assume a mechanical system with m points in 3D, evolving through
a discrete set of time samples t1, t2, . . . with constant time step
h (we use h = 0.033s). Let us denote the system configuration
in time tn as qn ∈ R3m. The system evolves in time according
to Newton’s laws of motion, where forces are represented by a
non-linear function f : R3m → R3m, i.e. f(qn) is the vector of
forces acting on all particles at time tn. We consider only position
dependent forces in this section and defer the discussion of damping
to Sec. 4.1. We assume the forces are conservative, i.e., f = −∇E,
where E : R3m → R is a potential function (often non-linear and
non-convex), encompassing both internal and external forces. The
task is to calculate system states q1,q2, . . . according to the laws
of motion.

Given the diagonal mass-matrix as M ∈ R3m×3m, the implicit
Euler time integration method works according to the following
update rules [?]:

qn+1 = qn + hvn+1 (1)

vn+1 = vn + hM−1f(qn+1) (2)

where vn represents velocity at time tn. Using the integration rule
(1) we can express the velocities as:

hvn = qn − qn−1 (3)
hvn+1 = qn+1 − qn (4)

Next, we eliminate velocities from equation (2) by multiplying it
with h and substituting (3) and (4):

qn+1 − 2qn + qn−1 = h2M−1f(qn+1) (5)

This is nothing but a discretized version of Newton’s second law (the
well-known F = ma). If qn−1 and qn are already known (previous
states), we need to solve (5) to obtain qn+1 (new state).

The classical recipe for solving the nonlinear system (5) involves
linearization of the forces in a known state [?]:

f(qn+1) ≈ f(qn) +∇f(qn)(qn+1 − qn) (6)

where∇f = −∇2E ∈ R3m×3m is the Hessian, i.e., matrix of sec-
ond derivatives. Equation (6) is then substituted into (5), reducing
the problem to a linear system which is solved using e.g. precondi-
tioned conjugate gradients. Alternatively, the system of nonlinear
equations (5) can be converted to an optimization problem. To sim-
plify notation, we will denote the unknown state as x := qn+1 and
the known component as y := 2qn − qn−1. Multiplying by the
mass matrix M, we can write (5) succinctly:

M(x− y) = h2f(x) (7)

The solutions of (7) correspond to critical points of the following
function:

g(x) =
1

2
(x− y)TM(x− y) + h2E(x) (8)

2

To appear in ACM TOG ().

Indeed,∇g = 0 is exactly equation (7). This leads to the optimiza-
tion problem minx g(x); this formulation is known as variational
implicit Euler [?]. To avoid confusion with symplectic methods
(sometimes also called variational [?]), we will refer to (8) as op-
timization implicit Euler. The standard numerical solution of the
optimization implicit Euler also employs Newton’s method [?].

The optimization problem minx g(x) offers an interesting insight
into Position Based Dynamics [?]. If we define an energy potential
EPBD as the sum of squares of the PBD constraints, we notice
that the PBD constraint projection solver attempts to minimize g(x)
using a Gauss-Seidel-like method. The problem is that the PBD
solver 1) does not take the inertial term (x−y)TM(x−y) explicitly
into account and 2) the projection of each individual constraint is not
guaranteed to decrease EPBD because the effect of the remaining
constraints is ignored. Nevertheless, PBD is typically quite effective
in reducing g(x) and can be therefore understood as a heuristic
variant of the implicit Euler method where E := EPBD .

4 Method

The main idea of our technique is to reformulate the energy po-
tential E in a way that will allow us to employ a block coordinate
descent method. The crucial component of E are spring potentials.
According to Hooke’s law, the spring potential is defined as:

1

2
k(||p1 − p2|| − r)2 (9)

where p1,p2 ∈ R3 are spring endpoints, r ≥ 0 is the rest length,
and k ≥ 0 is the spring stiffness.

The key to our reformulation is the following fact showing that the
spring potential (9) is a solution to a specially designed constrained
minimization problem.
Lemma. For each p1,p2 ∈ R3 and r ≥ 0:

min
||d||=r

||(p1 − p2)− d||2 = (||p1 − p2|| − r)2

Proof. We directly minimize over the auxiliary variable d ∈ R3.
For brevity we define p12 := p1 − p2 and rewrite:

||p12 − d||2 = ||p12||+ ||d||2 − 2pT
12d

Due to the constraint on d, we note that ||d||2 = r2 and therefore:

min
||d||=r

||p12 − d||2 = min
||d||=r

−2pT
12d = max

||d||=r
pT
12d

The solution is obviously d = r (p12/||p12||). If we substitute this
into ||p12 − d||2, we obtain:∣∣∣∣∣∣∣∣p12 − r

p12

||p12||

∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣ p12

||p12||
(||p12|| − r)

∣∣∣∣∣∣∣∣2 = (||p12|| − r)2

The reformulation of Hooke’s law into the minimization problem:

min
||d||=r

||(p1 − p2)− d||2 (10)

is reminiscent of as-rigid-as-possible methods [?; ?], because d ∈
R3 can be interpreted as a rotated rest-pose spring direction. If
we sum the contributions of all springs together, after some matrix
algebra we obtain:

1

2

s∑
i=1

ki||pi1 − pi2 − di||2 =
1

2
xTLx− xTJd (11)

where s is the total number of springs, i1, i2 ∈ {1, 2, . . . ,m} are
indices of spring i endpoints, and the vector x = (p1, . . . ,pm).
The matrices L ∈ R3m×3m,J ∈ R3m×3s are defined as follows:

L =

(
s∑

i=1

kiAiA
T
i

)
⊗ I3, J =

(
s∑

i=1

kiAiS
T
i

)
⊗ I3 (12)

where Ai ∈ Rm is the incidence vector of i-th spring, i.e., Ai,i1 =
1, Ai,i2 = −1, and zero otherwise. Similarly, Si ∈ Rs is i-th spring
indicator, i.e., Si,j = δi,j . The matrix I3 ∈ R3×3 is the identity
matrix and ⊗ denotes Kronecker product. Note that the matrix L
is nothing but a stiffness-weighted Laplacian of the mass-spring
system graph.

If we denote external forces (gravity, user interaction forces, and
collision response forces) as fext ∈ R3m, we can write the potential
of our system as:

E(x) = min
d∈U

1

2
xTLx− xTJd+ xTfext (13)

where U = {(d1, . . . ,ds) ∈ R3s : ||di|| = ri} is the set of
rest-length spring directions. We plug this into the minimization
objective (8), arriving at the final optimization problem:

min
x∈R3m, d∈U

1

2
xT(M+ h2L)x− xTJd+ xTb (14)

where we have aggregated the external forces and inertia (y in
Sec. 3) into vector b ∈ R3m and dropped the constant terms. The
vector x∗ ∈ R3m where the minimum in (14) is attained is an exact
solution of the implicit Euler timestep.

Numerical solution. The minimization problem (14) can be solved
using block coordinate descent [?] (also known as alternating opti-
mization). Starting with an initial guess for x (we use y), we first
fix x and compute the optimal d (local step). Second, we fix d and
compute the optimal x (global step), repeating this process until a
maximal number of iterations is reached. In contrast to previous as-
rigid-as-possible methods, our local step does not require Singular
Value Decompositions, but only vector normalizations (reciprocal
square roots). It can be also interpreted as projecting the springs to
their rest lengths, but unlike with Position Based Dynamics, spring
stiffness are correctly taken into account (they are built into L and
J). In the global step (fixed d), we need to solve a convex quadratic
minimization problem. Indeed, because L is symmetric and positive
semi-definite, the system matrix M + h2L is symmetric positive
definite. Most importantly, as long as the timestep, particle masses,
spring stiffness, and connectivity remain unchanged, the system
matrix is constant. Therefore, we pre-compute its sparse Cholesky
factorization (guaranteed to exist), which makes the linear system
solve very fast. We would like to emphasize that this is not an ad-hoc
approximation – our method converges to the exact solution of the
implicit Euler method with standard Hookean springs.

4.1 Damping and Collisions

A simple method to introduce damping into our formulation is as
follows. Recall that the term y from equation (8) is simply the
result of inertia (Newton’s first law) when all forces are ignored,
i.e., y = qn + hvn. Damping can be achieved simply by setting
y to qn + hṽn, where we replaced vn as defined in equation (3)
with a damped velocity ṽn. We use only a very simple damping
model – ether drag [?], which sets ṽn := αvn, where α ∈ [0, 1]
is a parameter, typically very close to 1. However, any damping
model can be used with our method, such as the rigid-body modes
preserving drag [?] or truly material-only stiffness-proportional
damping [?].

3

To appear in ACM TOG ().

Object m s time/iteration Pre-factorization
Cloth 6561 32158 5ms 113ms
Hippo 2387 13135 1ms 18ms
Frog 6834 35261 3.1ms 54ms
Dog 28390 148047 20.3ms 442ms

Table 1: Our example models: number of vertices (m), springs (s),
run-time of our method per one iteration, and time to pre-compute
sparse Cholesky factorization.

Conceptually, collision forces are part of the external force vec-
tor fext. Instead of calculating the collision forces explicitly, we
note that in the global step fext enters the right-hand-side term, and
because M+ h2L has full rank, any translation of x can be accom-
plished by appropriately chosen fext. Therefore, we can short-circuit
this process and instead of computing fext, we directly move x to the
desired collision-free state, computed by collision response routines.
These methods for handling damping and collisions are arguably
basic, but effective in achieving the desired behavior.

5 Results

In real-time simulation, it is desirable to use a constant timestep h
chosen according to the target framerate. We use h = 0.033s in all
our examples. Our method works robustly with fixed timestep even
if only few iterations of the local/global solver are enabled. Semi-
implicit methods [?] rely on adaptive step size control to achieve
robustness which is 1) impractical due to variable run-time cost and
2) inconsistent, because the amount of artificial damping inherent to
implicit Euler depends on the step size. We compare our technique
to a state-of-the-art numerical implementation of Newton’s method
which employs a line search scheme and diagonal Hessian correction
in case of indefinite matrices [?], which enables constant step size.
Note that our method does not require any such precautions – both
the local and global steps find the exact minimum in their subsets of
variables, so no line search is necessary.

The complexity of our testing models and the performance of our
method is reported in Tab. 1. We study the convergence speed on
one typical frame of our cloth-swinging animation (Fig. 2). The
relative error reported in Fig. 2 is defined as:

g(xi)− g(x∗)
g(x0)− g(x∗)

(15)

where x0 is initial guess, xi is the current iterate, and x∗ is the
final solution. Our method exhibits linear convergence rate, whereas
Newton’s method quickly enters its quadratic convergence phase [?].
However, Fig. 2 (top) ignores the fact that one iteration of Newton’s
method is much more computationally expensive than one iteration
of our method. In Fig. 2 (bottom), we therefore plot the relative
error with respect to time. We see that Preconditioned Conjugate
Gradients run much faster in this case than a sparse direct solver.
For both methods, as well as with our technique, we use the Eigen
library [?], running on a single core of Intel i7-3720QM CPU at
2.60GHz.

While block coordinate descent cannot compete with the quadrat-
ically convergent stage of Newton’s method, we notice that our
approach outperforms Newton’s method in its first (damped) phase.
In other words, Newton’s method becomes more effective only when
the current iterate xi is already close enough to the solution x∗. If
exact solution is desired, our technique can be useful to quickly
calculate a good starting point for Newton’s method.

The main practical implication of our method stems from the fact that

0 20 40 60 80 100 120
10-6

10-5

10-4

10-3

10-2

10-1

100

number of iterations

re
la

tiv
e

er
ro

r

Our Method
Newton with Direct Solver
Newton with PCG Solver

(a)

(b)

(c)

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10-6

10-5

10-4

10-3

10-2

10-1

100

time (seconds)
re

la
tiv

e
er

ro
r

Our Method
Newton with Direct Solver
Newton with PCG Solver

(a)

(b)

(c)

(d)

(a) 1 5.4 ms 3.61 * 10-1

(b) 10 50.6 ms 1.96 * 10-1

(c) 100 501 ms 4.02 * 10-2

(d) 1000 5.05 s 2.98 * 10-4

Number of Iterations Time Relative Error

Figure 2: Comparison of relative error vs. iteration count (top)
does not reflect the cost of each iteration. Below we plot the relative
error vs. computation time. In both graphs we focus on one time
step of our cloth-swinging animation at the depicted frame.

exact solution is rarely required in physics-based animation. Indeed,
previous methods [?] limit the number of iterations of Newton’s
method to one. To experimentally evaluate the effect of approximate
solutions, we tested our method on a simple animation sequence
simulated with our method using 1, 10, 100, and 1000 iterations of
the local/global solver. One iteration produces a stable and plausible
simulation, but the wrinkles look a bit inflexible (Fig. 3, please see
also the accompanying video). Ten iterations seem to offer the best
trade-off between speed and quality. In our example frame (Fig. 2),
ten iterations of our method achieve better relative error than one
iteration of Newton’s method (0.196, vs. 0.2496 for Newton) as well
as faster run-time (50.6ms, vs. 181ms for one iteration of Newton
with PCG). With hundred or thousand iterations it is hard or even
impossible to tell the difference from an exact solution.

Quick approximate simulation can be achieved also using Position
Based Dynamics (PBD) [?]. One problem with PBD is that its
stiffness parameters are not compatible with the standard Hookean
model. We tried to carefully tune the PBD parameters to get be-
havior as close as possible behavior to our settings. Unfortunately,
even though the PBD solver adjusts its parameters according to the
number of iterations, increasing the number of iterations still in-
creases stiffness of the system. Our method does not suffer from this
problem and converges to exact implicit Euler solution, as shown in

4

To appear in ACM TOG ().

Our Method
1 iteration, 5 ms

Our Method
10 iterations, 50 ms

Our Method
100 iterations, 500 ms

Our Method
1000 iterations, 5 s

Exact Solution
Newton’s Method, 13 s

Figure 3: One example frame from our cloth animation simulated using our method with 1, 10, 100, and 1000 iterations of our local/global
solver. Exact solution computed using Newton’s method is shown for comparison.

Our Method
10 iteration, 50 ms

Exact Solution
Newton’s Method, 13 s

Figure 4: In challenging situations such as impact on collision our
approximate solution results in loss of detailed wrinkles.

the accompanying video.

6 Limitations and Future Work

We note that using a fixed number of iterations of our local/global
solver produces only approximate results. In some settings, e.g.
with strong external forces due to collisions (Fig. 4), this causes
obvious loss of detail. We implemented only a simple collision
detection technique and our prototype currently does not address
self-collisions. A trade-off inherent to our method is that changing
the mass-spring system parameters (masses or stiffness) or the spring
connectivity requires re-computing the Cholesky factorization. This
may be an issue if effects such as tearing are required, and one
possible solution would be to employ fast Cholesky updates [?].

We only consider mass-spring systems in this paper. In the future,
we are planning to generalize our approach to thin shells, where
the rest-length spring directions in equation (10) would be replaced
by 2 × 2 SVD, which can be still computed in a closed form. We
believe it will be also very fruitful to experiment with different types
of numerical techniques, such as nonlinear conjugate gradients and
quasi-Newton methods. We also intend to generalize our method to
symplectic time integration approaches. Finally, we are interested
in the perceptual aspects of time integration and we would like to
more formally address the question of how much error is noticeable
by the average observer.

7 Conclusions

We presented a novel numerical method for implicit Euler time step-
ping of mass-spring system dynamics. Our technique is based on
block coordinate descent, which gives it different properties than
the traditional Newton’s method. Our method can approximate
the solution in a limited amount of computational time, making it
particularly attractive for real-time applications – we demonstrate
real-time cloth with quality similar to the exact solution. The pro-
posed algorithm can also be useful for quick simulation preview and
for bootstrapping Newton’s method. We hope that our method will
encourage further investigation of time integration techniques and
the underlying nonlinear numerical problems.

5

