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Figure 1: (a) Coarse simulation, (b) subdivision, (c) our proposed upsampling and (d) fine-scale simulation. Our upsampling operator is
learned from a small set of coarse and fine-scale examples, which allows it to achieve higher quality than subdivision while still being linear
and therefore very efficient and simple to implement (this example is upsampled in 0.8ms on a single CPU thread).

Abstract

We propose a method for learning linear upsampling operators for
physically-based cloth simulation, allowing us to enrich coarse
meshes with mid-scale details in minimal time and memory budgets,
as required in computer games. In contrast to classical subdivision
schemes, our operators adapt to a specific context (e.g. a flag flap-
ping in the wind or a skirt worn by a character), which allows them
to achieve higher detail. Our method starts by pre-computing a
pair of coarse and fine training simulations aligned with tracking
constraints using harmonic test functions. Next, we train the upsam-
pling operators with a new regularization method that enables us to
learn mid-scale details without overfitting. We demonstrate gener-
alizability to unseen conditions such as different wind velocities or
novel character motions. Finally, we discuss how to re-introduce
high frequency details not explainable by the coarse mesh alone
using oscillatory modes.
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1 Introduction

Cloth simulation has become commonplace in computer gener-
ated movies, and is slowly but surely finding its way into com-
puter games, with run-time solutions available commercially from
NVIDIA PhysXTMand HavokTMand as open-source from the Bullet
Physics Library. One challenge is that current games are complex
pieces of software executing many inter-dependent tasks, includ-
ing rendering, animation, artificial intelligence, gameplay, human-
computer interaction and networking, with frame budgets of 16-
33ms. Because advanced effects such as cloth are typically not
vital components of a game, the time budget for most developers is
around 1ms. With commodity CPUs, this time budget only allows
very coarse simulation meshes, inadequate for direct display. While
the computing power of modern GPUs is sufficient to simulate high-
resolution meshes in real-time, many games choose to spend the
majority of their GPU budgets on rendering. In the future we can
expect more powerful hardware, however, light-weight solutions
will always be important for the increasingly popular, low-power,
mobile devices.

Many games often resort to pre-computed solutions with limited
flexibility [Herman 2001; Kavan et al. 2010] or subdivided coarse
simulation with limited detail. Subdivision has a long history in
computer graphics and is frequently applied to cloth. The most
common subdivision schemes are linear and feature very efficient
implementations [Loop 1987]. Recent work on adding detail to
coarse simulations departs from the linear schemes and focuses on
high-resolution detail synthesis using advanced non-linear operators
[Feng et al. 2010; Rohmer et al. 2010], simplified fine-scale physics
[Müller and Chentanez 2010] or comprehensive databases of exam-
ple shapes [Wang et al. 2010a]. While real-time results have been
demonstrated using high-end graphics hardware, the current gam-
ing market is dominated by consoles, which have far more limited
computing resources.

In this paper, we focus on linear upsampling operators that offer very
simple and efficient implementations across a number of platforms.
We aim at delivering interesting mid-scale details missing in the
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coarse scale simulation, while keeping our method general and
supporting both character clothing and environmental cloth. In
contrast to subdivision, we consider dense upsampling matrices
that are specialized for a given context, such as a skirt worn by a
character or a flag flapping in the wind, which allows us to trade-
off complete generality for higher visual quality. This trade-off is
justified because in games interaction possibilities are often limited
by design (e.g., the flag will not be removed from the pole and a skirt
will always be attached at the waist). At the same time, we allow
for rich interactivity in the chosen subspace (e.g., changing wind
velocity or applying unexpected motions), making our approach
more responsive than pre-computed solutions.

Our main contribution is a method for designing linear upsampling
operators that capture context-specific mid-scale details using a small
set of training data, such as a skirt animated in a walking motion or
a flag flapping in the wind with constant speed. We do not attempt to
exhaustively sample the set of all possible animations, which would
be hard or even impossible in modern games. Instead, we propose
harmonic regularization (Section 3), a regularization method that
extends the well-known Tikhonov approach and allows for precise
control between capturing details and overfitting. After a one time
mesh-dependent pre-computation, our fitting process is fast enough
for interactive authoring, enabling us to put an artist in the loop
and facilitate deployment to production. To generate high-quality
training data, we align the coarse and fine-scale cloth meshes using
tracking constraints [Bergou et al. 2007], proposing harmonic test
functions (Section 4). Finally, we discuss a method to re-introduce
fine-scale traveling waves (if any) using oscillatory modes, useful,
for example, in simulations subjected to strong wind (Section 5).
Our prototype implementation achieves speeds around 1ms on a
single CPU core for both coarse simulation and upsampling.

2 Related Work

Cloth simulation. We only scratch the surface of the physically
based animation literature, please refer to the surveys [Nealen et al.
2005; Müller et al. 2008] for a more comprehensive introduction.
Past decades witnessed important developments in collision handling
[Bridson et al. 2002], cloth energy models [Grinspun et al. 2003],
time integration [Baraff and Witkin 1998; Harmon et al. 2009] and
cloth inextensibility [Goldenthal et al. 2007; English and Bridson
2008]. Recently, position-based approaches to dynamics [Jakobsen
2001; Müller et al. 2007; Müller 2008] are becoming increasingly
popular in the computer graphics industry [Stam 2009]. The closely
related idea of strain limiting [Provot 1995] also remains an active
research area [Thomaszewski et al. 2009; Wang et al. 2010b]. Our
approach is not tied to a specific simulation paradigm, but for our
experiments we chose the position based dynamics of Müller and col-
leagues [2007] for its speed and stability. The TRACKS framework
[Bergou et al. 2007] was developed to address the art-directability
problem of cloth simulations by constraining the fine-scale “tracked”
simulation to match a given coarse “guide” animation; related tech-
niques have also been studied for deformable solids [Barbič and
Popović 2008; Barbič et al. 2009]. In this paper, we employ tracking
to generate well-behaved training data.

Subdivision. Subdivision surfaces [Zorin et al. 2000] provide the
most common way to obtain smooth rendering meshes from coarse
simulation data. Their application to cloth and character animation
is classic [DeRose et al. 1998], with a popular method for triangular
meshes due to Loop [1987]. For rendering meshes with arbitrary
connectivity, similar results can be obtained using geometry-aware
bases [Sorkine et al. 2005]. However, these methods only guaran-
tee geometric smoothness and have no information about material
properties or external forces. Our approach strives to extend these
concepts to physically inspired details while maintaining linearity.

Procedural wrinkle synthesis. Coarse simulation meshes can also
be enriched with details using physically based buckling models,
typically resulting in nonlinear methods assuming (quasi-)isometry
of the fine mesh [Hadap et al. 1999; Kang et al. 2001; Larboulette
and Cani 2004; Tsiknis 2006; Loviscach 2006; Kang and Lee 2007].
The latest procedural techniques [Rohmer et al. 2010] trade real-
time performance for realistically animated wrinkles in any mesh
configuration. Müller and Chentanez [2010] synthesize very detailed
wrinkles using a simplified dynamics solver running on the GPU.
Procedural wrinkle synthesis can be layered on top of our method if
greater detail is desired; for fine-scale traveling waves, one option is
to apply our oscillatory modes (Section 5).

Data driven methods. An important alternative to physically based
simulation is data-driven modeling of deformable objects [James
and Fatahalian 2003], which has been investigated for cloth both
in real-time [Cordier and Magnenat-Thalmann 2005] as well as
feature animation applications [Cutler et al. 2005; Kim and Ven-
drovsky 2008]. However, the problem continues to attract research
efforts. Recently, Wang and colleagues [2010a] emphasize quality
and pre-compute an extensive database of wrinkled clothing meshes
for uniformly sampled joint rotations. Our method does not aim
for as high a level of detail but, is orders of magnitude faster and
handles loose clothing and environmental cloth. Emphasizing per-
formance, similarly to our method, stable spaces [de Aguiar et al.
2010] synthesize character clothing based on body motion and cloth
history. While very fast, stable spaces do not have a run-time physics
component and rely on learning dynamics from the training data.
Our approach has similar time and memory complexity but requires
much less training data, features physically-based dynamics and is
applicable to non-character clothing.

Feng and colleagues [2010] present a data-driven deformation trans-
former to add details to coarse simulations. Because their approach
assumes only implicit alignment of coarse and fine training simula-
tions (see Figure 2 left), the deformation transformer needs to learn
how to compensate for the often highly nonlinear mismatch between
the coarse and fine scale physics, greatly complicating the ability
to generalize (e.g., note the difference in local orientations). While
this problem is challenging, Feng and colleagues [2010] achieve
promising results by combining skinning, rotational regression, ker-
nel canonical correlation analysis [Feng et al. 2008] and clustered
principal component analysis. In our approach, we avoid these prob-
lems by aligning the training data using tracking (see Figure 2 right),
allowing us to achieve an order of magnitude faster run-time, much
simpler implementation and support of environmental cloth.

Figure 2: A coarse (orange) and corresponding fine-scale simula-
tion frame (purple) relying on alignment via collision objects only
(left) and using tracking (right, 80 test functions).

Regularization. Regularization is a method for solving ill-posed
inverse problems by injecting additional assumptions (priors), with
a popular method due to Tikhonov [Pighin and Lewis 2007].
Geometry-aware bases introduced by Sorkine and colleagues [2005]
can be considered as an application of Tikhonov regularization to
mesh processing, as discussed in detail by Volodine and colleagues
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Figure 3: An example of one column (shape function) for three upsampling operators on a flat rectangular mesh: (a) Loop subdivision, (b)
non-regularized least squares fit of training data and (c) our method.

[2006]. These methods rely on discrete Laplace-Beltrami operators
[Pinkall and Polthier 1993; Wardetzky et al. 2007; Lévy and Zhang
2010] to express a smoothness prior. Using spectral techniques, we
extend the concept of Tikhonov regularization to the spatio-temporal
domain proposing, essentially, animation-aware functions. Related
approaches in physics include modal decomposition and subspace
methods [James and Pai 2002; Barbič and James 2005].

3 Learning Upsampling Operators

We start by reviewing the basic theory and introducing our notation.
A linear upsampling operator mapping coarse points pc ∈ RM×3 to
fine points pf ∈ RN×3 can be represented by a matrix U ∈ RN×M .
In our intended applications, M is around 100-200, with N on the
order of 5k-10k. The upsampling can be expressed using matrix
multiplication

pf = Upc (1)
Note that this formulation is rotationally invariant, because for an
arbitrary A ∈ R3×3

U(pcA) = (Upc)A = pfA,

i.e., transformation by A followed by upsampling is equivalent to
upsampling followed by the transformation. To guarantee affine
invariance it is sufficient to require that the rows of U sum to 1. For
brevity, we denote the set of matrices that satisfy the partition of unity
constraint as U1 = {U ∈ RN×M :

∑
j Ui,j = 1 ∀i = 1, . . . , N}.

Intuitively, Equation (1) takes linear combinations of the columns
of U, and therefore, spatial smoothness of the columns is critical
for a smooth result. We informally call the columns of an upsam-
pling operator shape functions and to visualize them we use a flat
rectangular mesh. Each column corresponds to one coarse vertex,
typically collocated with the maximum. For example, one of the
shape functions of a Loop subdivision matrix is shown in Figure 3a
(the remaining ones being just translated copies of the “bump”).

3.1 Data Term

Assume we have a set of aligned training pairs (pc,i,pf,i) for i =
1, . . . , F , where F is the number of input frames. Stacking both
coarse and fine examples into matrices Pc ∈ RM×3F and Pf ∈
RN×3F allows us to write the regression problem as

argmin
U∈U1

‖UPc −Pf‖, (2)

where ‖.‖ denotes the Frobenius norm. This is a constrained least
squares problem that can be solved efficiently using standard nu-
merical methods [Lawson and Hanson 1974]. However, even with
enough training data so that Pc is numerically well conditioned (i.e.,
an overconstrained problem), this approach often results in shape
functions that overfit, as can be seen in Figure 3b. While optimally
reconstructing the input data, even a small perturbation away from
the training frames can lead to very non-smooth results.

3.2 Harmonic Regularization

To obtain smooth upsampling even for configurations away from the
training data, we introduce a smoothing term employing a symmetric
regularization matrix R ∈ RN×N

argmin
U∈U1

‖UPc −Pf‖+ ‖RU‖ (3)

We also experimented with a ‖.‖1-norm of the regularization term
(sum of absolute values) instead of the Frobenius norm (sum of
squares). The absolute values metric produces sparse, but, unfor-
tunately, not very smooth shape functions. Also, the required opti-
mization routines are much more complex and therefore, we focus
on the Tikhonov-like form in Equation (3).

It is important to note that our regularization matrix, R multiplies
U from the left, acting on the individual columns of U, whereas a
standard Tikhonov regularization term multiplies U from the right
(i.e. ‖UR‖), acting on the individual rows of U. By acting on the
columns of U, the left multiplication encourages spatially smooth
shape functions. With the simplest choice of regularization matrix,
R := αI, α ≥ 0, left and right multiplication are equivalent because
matrix multiplication by αI is commutative. This case is easy to
solve numerically, because the solve for each row of U is indepen-
dent. However, this simple regularization term does not result in
sufficiently smooth shape functions, see Figure 4.

Figure 4: Example shape function with Tikhonov regularization for
α = 1 (left) and α = 2 (right).

Better results can be obtained by using R := αL, where L ∈
RN×N is a symmetrized Laplace-Beltrami operator [Pinkall and
Polthier 1993; Lévy and Zhang 2010]. Specifically, L :=

V−
1
2 CV−

1
2 , where V ∈ RN×N is a diagonal matrix of Voronoi

areas and C ∈ RN×N is a sparse symmetric matrix of cotan-
gent weights, i.e., for an edge connecting vertices i and j, Ci,j =
(cotβi,j + cot β̃i,j)/2 where βi,j and β̃i,j are opposite angles of
the incident triangles and Ci,i = −

∑
j Ci,j .

However, the Laplacian regularization term L introduces spatial
dependencies and therefore the rows can no longer be solved for
independently. We can still solve for the whole U at once by as-
sembling an aggregate linear system with N ·M unknowns, but,
unfortunately, the resulting system is not very sparse due to the
dense data term. Even if we compress Pf using Singular Value
Decomposition and apply a state-of-the-art direct solver, PARDISO
[Schenk and Gartner 2006], the solve often takes more than an
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Figure 5: Example of several low-order harmonic functions (out of a total of 7016) of a flat rectangular mesh. Intuitively, the harmonic
functions constitute an orthonormal basis that is as smooth as possible.

hour, which is prohibitively expensive for user tuning with different
training datasets and regularization parameters (note that the system
matrix depends on both Pf and α). We also experimented with
iterative solvers such as preconditioned conjugate gradients, but
found that they did not outperform the direct ones. Moreover, we
observed the regularization term αL does not prevent overfitting in
low frequencies.

Both the time consuming numerics and the low frequency overfit-
ting can be solved by a technique we call harmonic regularization.
We start by factorizing L = QΛQT using the Eigendecomposi-
tion, where Q ∈ RN×N is an orthonormal matrix containing mesh
harmonic functions (see Figure 5) and Λ is a diagonal matrix of
Eigenvalues. This factorization allows us to rewrite the Laplacian
regularization term as

‖αLU‖ = α‖LU‖ = α‖QΛQTU‖ = α‖ΛQTU‖,

because multiplication by an orthonormal matrix does not change
the Frobenius norm. Similarly, we can rewrite the data term as

‖UPc −Pf‖ = ‖QTUPc −QTPf‖,

Substituting Û = QTU lets us pose the problem as

argmin
Û∈QT (U1)

‖ÛPc −QTPf‖+ α‖ΛÛ‖ (4)

We solve this constrained least squares problem for Û ∈ RN×M

and recover the upsampling operator as U = QÛ. The advantage
of this formulation is that because Λ is diagonal, the rows of Û
can be solved for independently. Therefore, with pre-computed Q,
the solve for U takes only a few seconds, which makes it over two
orders of magnitude faster than the direct sparse solver (see Table 1).
While the factorization of L takes up to several minutes with our
datasets, it only needs to be computed once per mesh and can then
be re-used for different Pf and α. Alternatively, we could calculate
only the low-order harmonics using the more efficient numerical
techniques developed by Vallet and Lévy [2008].

frequency

eigenvalueExamination of the singular
values Λ explains why the
Laplacian smoothing term may
not prevent overfitting at low
frequencies—the singular values
corresponding to low-order har-
monics are very small (a typical spectrum is plotted in the figure
to the right) and therefore these modes are not regularized enough.
To remedy this situation, we propose using a regularization matrix
R := QΓQT , where Γ ∈ RN×N is a diagonal matrix generalizing
the damping parameter α ∈ R to N scalars, which leads to

argmin
Û∈QT (U1)

‖ÛPc −QTPf‖+ ‖ΓÛ‖ (5)

Due to commutativity, the simplest choice of Γ := αI is equivalent
to Tikhonov regularization and no single α guarantees optimal re-
sults: for small α, the noisy high frequencies are not damped enough,

and larger values of α quickly begin to suppress the desirable low
frequencies, see Figure 4. This difficulty can be solved by specifying
a different damping term for each frequency using Γ.

The optimal choice of Γ depends on the characteristics of the training
data and on the desired compromise between capturing details and
the ability to generalize. The most straightforward way to eliminate
the low frequency overfitting would be to employ Γ = αI + βΛ
or a simple step function representing a sharp cut-off at a specified
frequency. However, we obtained the best results with polynomial
profiles of the form γn = a(1+ b((n− 1)/N))c for n = 1, . . . , N
and parameters a, b, c ≥ 0, which allow for good spectral control
while smoothly attenuating high frequencies. For more details on
parameter tuning please see Section 6. As an example, the shape
function in Figure 3c was generated using a = 0.8, b = 10 and c =
4. Out of curiosity, we calculated the corresponding regularization
matrix R := QΓQT and found it to be almost completely dense,
reinforcing our decision to move away from sparse solvers. Note that
while we do not explicitly enforce localization, the smoothness prior
together with the partition of unity constraint results in a noticeable
spatial bias, i.e., fine vertices closer to the corresponding coarse
vertex are influenced more than the ones farther away.

4 Tracking

Any data-driven approach can only produce results as good as
the training data, in our case, pairs (pc,i,pf,i) of corresponding
coarse and fine scale meshes. Even with carefully selected mesh-
independent simulation parameters, the two simulations will behave
differently because the finer one can represent higher frequencies;
these small differences (along with numerical errors) accumulate
over time and can cause the two simulations to bifurcate to different
states, see Figure 2. Therefore, we choose to enforce alignment
using additional constraints on the fine-scale simulation. There are
several ways to formulate and enforce such tracking constraints
[Bergou et al. 2007; Müller and Chentanez 2010] and we describe
our implementation below.

Because our coarse and fine meshes represent the same surface,
they are well aligned in the rest-pose, which enables us to define
barycentric interpolation B ∈ RN×M by projecting the fine vertices
onto the coarse triangles. (We also experimented with higher order
interpolation and approximation schemes but found no significant
visual difference in the results.) The barycentric interpolation of
the coarse mesh can therefore be written as Bpc ∈ RN×3. The
tracking constraint requires the fine simulation state pf to match
certain carefully chosen degrees of freedom from Bpc at each frame.
Specifically, we define a matrix T ∈ RT×N consisting of T <<
N row vectors of mass-weighted test functions. Without loss of
generality, we can assume the rows of T are orthonormal. The
tracking constraint is a hard constraint on the fine simulation state
pf that requires

Tpf = TBpc (6)

Note that since the rows of B form a partition of unity, the tracking
constraint is invariant to simultaneous rigid body transformations of
pf and pc. Enforcing Equation (6) is straightforward with a position
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based simulator [Müller et al. 2007] and with a force-based simulator
can be achieved using constraint forces [Bergou et al. 2007]. Either
way, the quality of the constrained fine scale simulation depends on
the chosen test functions T. For example, if we choose delta func-
tions as test functions (i.e., the matrix T is zero except for exactly
one 1 in each row), the fine simulation will exhibit objectionable
tugging artifacts [Bergou et al. 2007]. The test functions proposed
by Bergou and colleagues lead to more natural tracking, but small
temporal artifacts are noticeable in certain frames, see Figure 6 (left).

Figure 6: Fine mesh tracked with 80 test functions obtained using
clustering (left) compared to the same number of harmonic test
functions (right).

To analyze this issue, we observe the tracking constraint (6) requires
the orthogonal projections of pf and Bpc on the row space of T
to match. The component of pf in the nullspace of T is not influ-
enced by the tracking constraint. In other words, the corresponding
degrees of freedom behave exactly as dictated by physics. Since
we use tracking to restore fine-scale detail missing in the coarse
simulation, we argue that the row space of T should contain only
low frequencies, leaving the higher frequencies undisturbed. The
assumption of orthonormal rows of T again leads us to low-order
harmonics, already computed for harmonic regularization (see Fig-
ure 5). In our experience, harmonic test functions T lead to more
natural tracking results because only the low frequencies are con-
strained and, therefore, interference with the high frequencies is
avoided (see Figure 6 right). Additionally, the only parameter to
tune is the number, T , of applied test functions, which has a very
intuitive meaning—higher T leads to closer tracking. On the other
hand, we note that spatially varying test functions [Bergou et al.
2007] offer greater flexibility and sparser tracking constraints. An
interesting extension would be to consider how the generalizations
of the Laplacian [Wardetzky et al. 2007] can yield anisotropic and/or
spatially varying generalizations of harmonic functions.

5 Adding Oscillatory Modes

With training data generated using tracking (Section 4), the coarse
vertex positions pc are usually good predictors of the fine vertex
positions pf . An exception occurs in situations with persistent ex-
ternal forcing, such as when environmental cloth (flags, sails, . . . )
is subjected to strong wind. In this case, even the tracked simula-
tion often exhibits traveling waves that cannot be explained with
pc. Below we propose a method to capture these effects by using
oscillatory modes to add high frequency details after the application
of the upsampling operator. Note that this approach is related to
corrective techniques in skinning [Kry et al. 2002].

We start by examining the residual signal. For a given frame, we
denote the residual vector pr = pf−Upc ∈ RN×3. In simulations
with persistent external forcing, we observe a strong traveling wave
component. These traveling waves produce displacements mostly
along the normal to the upsampled surface Upc. Consequently,
we project the residuals onto the surface normals. Letting ni be
the surface normal at vertex i we construct a displacement vector
d ∈ RN×1 such that di = pTr,ini for i = 1, . . . , N . We calculate
the normal displacement vectors d for each frame and stack them

in a matrix D ∈ RN×F . The same method could also be applied to
tangential directions, if required.

Our goal is to decompose the matrix D into a spatial and temporal
component, represented by matrices E ∈ RN×2 and Ω(θ) ∈ R2×F ,
such that D ≈ EΩ(θ). Because we want to model traveling phe-
nomena, the temporal component Ω(θ) stores a pair of sine and
cosine functions with the same frequency, i.e., its j-th column con-
tains (sin(jθ), cos(jθ))T for j = 1, . . . , F . The frequency θ ∈ R
depends on the speed of the traveling wave. The spatial compo-
nent E can be interpreted as phase shifts and amplitudes at each
vertex, because for every ei,1, ei,2 ∈ R there exists ri, φi ∈ R
such that ei,1 = ri cos(φi) and ei,2 = ri sin(φi). The product
EΩ(θ) ∈ RN×F therefore reconstructs the traveling waves because
for vertex i and frame j we obtain

ri cos(φi) sin(jθ) + ri sin(φi) cos(jθ) = ri sin(φi + jθ) (7)

It remains to find the optimal E and θ for a given D, i.e., solve

argmin
E,θ

‖D−EΩ(θ)‖

First, we find a suitable θ by performing autocorrelation on the
columns of D, discovering the strongest periodic component of the
signal. Second, once θ has been determined, E can be calculated
using linear regression. We also experimented with regularization
but found overfitting is not an issue because high frequencies are
desirable in this case. The whole process can then be repeated on
the deflated version of D, i.e., D − EΩ(θ), until its Frobenius
norm decreases below a given threshold. However, in our flag
example we found one pair of oscillatory modes to be sufficient, see
Figure 7 visualizing our E. Note that this process is closely related
to Complex PCA [Kass and Anderson 2008], however, we do not
use any complex arithmetics.

Figure 7: A pair of oscillatory modes for the flag example describ-
ing phase shifts and amplitudes at every vertex.

At run-time, the oscillatory modes are used to enhance the upsam-
pled mesh Upc. The matrix E is constant and the current column
of Ω(θ) is given by the simulation time. The displacements recon-
structed according to Equation (7) are multiplied by the normal ni
and added to vertex positions. In spite of their simplicity, the oscilla-
tory modes provide interesting high frequency detail, see Figure 8.

Figure 8: Flag flapping in the wind upsampled without oscillatory
modes (left) and with one pair of oscillatory modes (right).
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6 Implementation and Results

Simulation. Our approach is not tied to a specific simulator, but to
generate our results we used our own implementation of position
based dynamics [Müller et al. 2007]. To ensure gradual transition
between kinematically controlled attachments, such as the waist
edge-loop of the skirt, we smoothly transition between skinning and
the upsampled mesh, similarly to Stoll and colleagues [2010]. We
currently perform only simple collision detection using sphere-swept
bounding volumes attached to the bones of an actor, as is often done
in games. For good tracking results, we allow compression in the
coarse-scale simulation, but not in the fine-scale one [Müller and
Chentanez 2010; Rohmer et al. 2010].

Experiments. We designed four test scenarios focusing on free
flowing and environmental cloth; clothing that closely follows the
motion of the body can be handled with methods using the character
rig [Kim and Vendrovsky 2008; Wang et al. 2010a; de Aguiar et al.
2010]. Each of our examples features one training and two novel
testing (generalization) motions, see Table 1 and Figure 11. For the
training sequence, an artist sets up the coarse and fine simulation
parameters, the number of test functions and, after the simulation
is complete, the regularization parameters. In our experience, the
simulation parameters are typically the hardest to tune. The resulting
upsampling operator is then tested on the two novel generalization
motions (e.g., dance and jumping jacks) without generating any new
training data. While automatic cross-validation techniques would
also be possible, having an artist in the loop is usually preferred in
game development. As shown in Figure 11, the upsampling opera-
tors result in higher visual quality than subdivision while requiring
only a fraction of the time compared to the fine-scale simulation
(computed on generalization motions for comparison only).

Skirt Flag Curtain Cape
Model statistics:
M (coarse points) 196 150 121 98
N (fine points) 7016 6336 5041 10162
F (train frames) 1073 1386 1490 905
T (test functions) 60 80 80 50

Run-time:
Memory 5.5MB 3.9MB 2.4MB 4MB

Upsampling on CPU 0.8ms 0.6ms 0.4ms 0.7ms
Upsampling on GPU 0.1ms 0.08ms 0.06ms 0.07ms

Coarse simulation 0.5ms 0.4ms 0.3ms 0.2ms
Pre-processing:
Compute harmonics 111s 84s 41s 343s

Learn U (our method) 6.8s 5.1s 3.4s 7.7s
Learn U (PARDISO) N/A∗ 6410s 1263s 3637s

Table 1: Model statistics, memory consumption, run-time perfor-
mance and pre-processing times for our examples. ∗In the skirt
example PARDISO ran out of memory (24GB).

Run-time performance. The CPU simulation and upsampling
times reported in Table 1 are measured on a 2.9GHz Intel X5670
CPU using a single thread. For the numerical computations used
in pre-processing (last three rows in Table 1), we employ the multi-
threaded IntelTMMKL library. Additionally, we tried simulating the
fine-scale meshes directly in Bullet, an optimized physics library fre-
quently used in both the film and game industries. Its single thread
CPU run-time performance was around 30ms per frame on the skirt
mesh, which is far too slow for games. (The speed of our prototype
simulator is comparable to Bullet.) However, coarse simulation is
much faster and combined with our upsampling takes about 1ms on
a single CPU core, which is sufficiently fast for games. We can also
stream the coarse points pc to the GPU (we used an NVIDIA GTX
280) and execute the upsampling there. The upsampling time on

the GPU is very small and should be acceptable even in games that
already have a GPU-heavy run-time component. The stable spaces
approach [de Aguiar et al. 2010] offers performance comparable to
our method; for example, they report a dress model with 5178 ver-
tices running in 3.7ms on a CPU. However, our method generalizes
better due to the run-time physics component, handles free flowing
and environmental cloth and does not need to learn dynamics effects
from the training data. Also, our training phase is faster and only
requires a single training motion sequence (de Aguiar and colleagues
[2010] use 33 motion clips and their learning phase takes 1.5 hours).

Regularization parameters. To define our polynomial profile for
harmonic regularization (Section 3.2), we need a non-decreasing
sequence γ1, . . . , γN specified by the parameters a, b, c ≥ 0. In
our experiments, we first set the bounds γ1 and γN , representing
the minimal and maximal penalties (we typically use γ1 = 1 and
γN = 105). The coefficients a and b can be directly computed from
γ1, γN and the exponent c. The exponent c controls the shape of the
resulting curve, with larger c allowing finer details in the upsampling
operator, see Figure 9. However, finer wrinkles do not generalize
well to novel motions, and therefore a suitable compromise must be
found (we typically use c = 4).

c = 2 c = 4 c = 20

none

Figure 9: The effect of varying the regularization parameter c in
(top) the training walk sequence and (bottom) generalization motion.
Compare with (right) no regularization.

Generalization. With appropriately chosen regularization param-
eters, our upsampling operators can be applied to motions quite
different from the training data. This feature is important, because
in modern games the range of possible motions is often huge and
constantly evolves during development. However, the ability to gen-
eralize has its limitations, as can be seen in Figure 10 (left) where
an upsampling operator trained on a walking motion is applied to
a dance motion—the diagonal wrinkles from torsional twists are
not captured, because they did not appear in the training data. This
limitation can be addressed by constructing a new operator U for
the dance animation, see Figure 10 (right). An interesting extension
would be to learn multiple versions of U and blend between them
at run-time; however, all of our examples (see Figure 11) use only
a single upsampling operator. We observed the oscillatory modes
(Section 5) used to enhance the flag animation also generalize sur-
prisingly well to different wind conditions and movements of the
pole, even though, for extreme wind conditions the direction of the
wrinkles is likely to be incorrect.
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Figure 10: Upsampling learned from walking and applied to danc-
ing (left), compared to fine-scale tracking simulation (middle) and
the result of a re-trained upsampling operator (using the same regu-
larization parameters, right).

Discussion. While the advanced nonlinear deformers [Feng et al.
2010; Wang et al. 2010a; Rohmer et al. 2010] are able to deliver a
very high level of detail and finer features than our method, their
performance is currently insufficient for games. The fastest of the
three [Feng et al. 2010] runs for M = 100, N = 19451 in 3.7ms on
the GPU; our method in the same settings requires 0.33ms (0.13ms
upsampling + 0.2ms simulation) and is substantially easier to imple-
ment. At the other end of the spectrum, subdivision is faster than
our technique and can generate smooth meshes of arbitrarily high
resolution in any configuration. However, the isotropic nature of
subdivision shape functions (see Figure 3a) limits the visual quality
especially when using very coarse simulation meshes, resulting in
non textile-looking deformations and lack of detail.

7 Limitations and Future Work

The upsampling operator may introduce penetrations even if the
coarse simulation is collision free; we prevent such collisions by
expanding the collision volumes. Our simulator also does not han-
dle cloth self-collisions due to performance considerations; the low
execution time of our method is achieved by using only a simple
coarse simulation model and linear upsampling operators. In its
current form, our approach is not suitable for much higher resolu-
tions because the dense upsampling operators become prohibitively
expensive. An interesting area of future work would be to further
compress and/or sparsify the upsampling operators, e.g., explicitly
enforce compact support of the shape functions. If finer-scale fea-
tures are desired, the results of our upsampling operators can be
further refined by procedural wrinkle synthesis [Rohmer et al. 2010;
Müller and Chentanez 2010]. For example, Müller and Chentanez
[2010] demonstrate refinement of simulation meshes ranging from
2k-7k vertices to very detailed meshes with 32k-112k vertices. An-
other limitation is that our upsampling operator uses only the current
state of the coarse simulation and therefore does not capture any fine
scale dynamics. An interesting extension would be to add previous
states of the coarse mesh (history) to the regression, similarly to de
Aguiar and colleagues [2010].

Our harmonic regularization is quite general and could be useful
for domains other than cloth, for example, hand, facial and hair
animation. In the context of cloth, we envision pre-visualization
applications in feature animation, especially if the cloth design
cycle already contains tracking—the artist could preview the coarse
simulation upsampled using our operator (perhaps learned from a
previous iteration) before committing resources to fine-scale tracking
simulation. Overall, we believe our approach helps to fill the gap
between extremely fast but non-physical subdivision operators and
more complex non-linear deformers.
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Figure 11: Our upsampling method compared to subdivision and fine-scale physics in one training and two novel generalization motions:
skirt (walk, dance, jumping jacks), flag (static, raise pole, fast wind), curtain (small object, big object, shooting balls), cape (walk, run, box).
The high-resolution simulation was computed on novel motions only for comparison and was not used in training.
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