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Figure 1: Frames from Armadillo Animation.

ABSTRACT
Clustered shape matching is an approach for physics-based anima-
tion of deformable objects, which breaks an object into overlapping
clusters of particles. At each timestep, it computes a best-fit rigid
transformation between a cluster’s rest state and current particle
configuration and Hookean springs are used to pull particles toward
desired goal positions. In this paper, we present multi-resolution
clustering as an extension to clustered shape matching. We itera-
tively construct fine-to-coarse sets of clusters and weights over the
set of particles and compute dynamics in a single coarse-to-fine pass.
We demonstrate that our approach enhances the possible elastic
behavior available to artists and provides an intuitive parameteriza-
tion to blend between stiffness and deformation richness, which are
in contention in the traditional clustered shape matching approach
that operates at a single spatial scale. We can specify a different
stiffness value for each resolution level, where a greater weight
at coarser levels result in a stiffer object while a greater weight
at finer levels yield richer deformation; we evaluate a number of
approaches for choosing these stiffness values and demonstrate the
differences in the accompanying video.
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1 INTRODUCTION
A classical problem in physics-based animation is developing tech-
niques and models to simulate the deformation of soft bodies in
a scene. These approaches should obey the laws of Newtonian
physics, while ensuring stability of objects under deformation.

Shape matching is a geometrically-motivated approach for sim-
ulating deformable objects that was introduced by Müller and col-
leagues [2005]. In this approach, each deformable object in a scene is
sampled with particles. At each timestep, a best-fit rigid transforma-
tion between each object’s rest state and the current configuration
of particles is computed. Finally, Hookean springs are used to pull
particles towards goal positions, resulting in a transformed shape
based on external forces (e.g. gravity) and the object’s response to
collisions in the environment.

A natural extension, also introduced by Müller and colleagues
[2005], involves breaking each object into overlapping clusters
of particles; this was coined “clustered shape matching” in later
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research. Despite lacking a well-defined mathematical foundation,
clustered shape matching provides advantages during simulation,
including the ability to use cluster overlap to keep objects from
falling apart. Furthermore, as the results by Jones and colleagues
[2015] suggest, by increasing the number of overlapping clusters
that an object is broken into (and therefore reducing the number of
particles contained in any one cluster), a richer object deformation
space is produced. However, Falkenstein and colleagues [2017] show
that increasing the number of clusters also reduces the apparent
stiffness of objects in simulation. Therefore, a reasonable problem
to investigate is whether a combination of both coarse and fine sets
of clusters in elasticity computations will provide a good blend of
the desired stiffness and deformation properties.

The application of multi-resolution clusters in elasticity com-
putations has not been considered previously for clustered shape
matching. Thus, we present this as a novel extension to the tradi-
tional framework. In this paper, we demonstrate that, while being a
straightforward extension of clustered shape matching, our multi-
resolution approach also displays the following behaviors:

• By considering coarser resolution levels (small set of large
clusters), objects demonstrate increased stiffness not visible
in the traditional framework with a large set of small clusters.
• By considering finer resolution levels (large set of small clus-
ters), objects demonstrate richer deformations not apparent
in the traditional framework with a small set of large clusters.
• Our approach incurs minimal additional computational cost.
• Our approach provides valuable artistic control of behavior
not available with single resolution clusters; it allows artists
to fine-tune the balance between stiffness and richness of
deformation.
• After experimenting with several automatic approaches for
setting the stiffness at different clustering sizes, we found
that the framework is not particularly sensitive to the choice
of function, but only to the relativeweighting between coarse,
medium, and fine.

2 RELATEDWORK
Müller and colleagues [2005] introduced a geometrically-motivated
shape matching approach having several advantages such as effi-
ciency, stability, and controllability. They also introduced several
extensions to their approach, including clustered shape matching.
More recently, Bargteil and Jones [2014] applied strain limiting to
clustered shape matching. Jones and colleagues [2015] advocated a
fuzzy c-means clustering approach, which produces a set of overlap-
ping clusters such that each particle may belong to several clusters
to varying degrees. They also introduced an approach for collision
detection and handling by using the intersection of spheres with
half-spaces of planes as collision proxy geometry. Jones and col-
leagues [2016] introduced an approach for enabling ductile fracture
in clustered shape matching. Falkenstein and colleagues [2017]
presented a method for reclustering particles to handle very large
plastic deformations.

Clustered shape matching is just one of many physics-based
animation approaches. For instance, lattice-based shape matching
was introduced by Rivers and James [2007], in which they defined
a deformable surface mesh as a lattice structure, and constructed

overlapping lattice clusters to allow for object deformation. Steine-
mann and colleagues [2008] adopted a similar approach, but instead
used a hierarchical representation based on an octree to achieve
improved performance. An increasingly popular approach for real-
time animation of deformable objects is position-based dynamics
(PBD) [Bender et al. 2014; Müller et al. 2007]. In this approach,
“forces” are applied directly on particles by using constraints. How-
ever, Bargteil and Jones [2014] note that while constraints can be
applied to make PBD stable and useful for real-time animation, it
nevertheless violates Newton’s first and second laws of motion due
to direct positional updates of particles. A variant of PBD is projec-
tive dynamics [Bouaziz et al. 2014; Liu et al. 2013], which involves
defining a set of constraints (e.g. collision) and projecting a set of
points onto the constraint set [Müller et al. 2007]. Other approaches
include using frame-based models [Faure et al. 2011; Gilles et al.
2011], where a sparse set of coordinate frames are defined to allow
for greater degrees of freedom and physically realistic deformation
[Gilles et al. 2011].

A common approach for encoding spatial information is multi-
scale clustering. For instance, He and colleagues [2015] used a
bottom-up approach to construct a bounding volume hierarchy
(BVH) by iteratively clustering sets of triangles in a triangle mesh,
such that the number of elementary collision tests performed in
animation of topology changing models is reduced, thus improving
simulation runtime. Müller [2008] also used a bottom-up approach
to construct a hierarchy of particles and constraints for position-
based dynamics (PBD), demonstrating faster convergence in solving
for PBD constraints while maintaining the ability to handle non-
linear constraints as with traditional PBD. Another popular data
structure to encode 3D spatial information is an octree; for example,
Srihari [1984] presented a method of applying octrees to represent
three-dimensional geometry at varying levels of detail.

These prior works all have the common intuition that consider-
ing multi-resolution spatial features allows for improved/unique
behavior in their corresponding tasks. Furthermore, these works
[He et al. 2015; Müller 2008] tend to use a bottom-up approach (i.e.
fine-to-coarse pass) to construct each resolution level. While we did
consider similar methods for our approach, these methods do not
lend themselves well to the use of fuzzy c-means clustering, which
Jones and colleagues [2015] demonstrate works well to generate
both coarse and fine sets of overlapping clusters for reasonable
animation behavior in the clustered shape matching framework.
Furthermore, since fuzzy c-means generates particle membership
weights based on the distance of particles from cluster centers,
there is no obvious way to propagate particle membership weights
between resolution levels if, for instance, only a subset of particles
are considered when constructing the next coarser resolution level.
However, we do not discount the merits of prior multi-resolution
clustering approaches in related areas of research [He et al. 2015;
Müller 2008]; in fact, our approach also constructs sets of clusters
at different resolution levels using a bottom-up approach.

The intuition for the expected behavior of our approach is most
similar to some research in computer vision and cloth simulation.
For instance, in computer vision, Ma and colleagues [2015] con-
structed a set of coarse-to-fine convolution features in order to
improve visual object tracking. More specifically, their approach en-
abled them to balance the properties of coarser and finer
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features, such that the coarser features capture semantics for high-
level visual recognition and the finer features capture details such
as object positions. Similarly, in cloth simulation, Kavan and col-
leagues [2011] presented a multi-resolution approach for upsam-
pling, which attempts to construct an upsampling operator that
enhances a coarse cloth mesh with details from more finely wrin-
kled cloth meshes.

In both works, a multi-resolution approach is used to combine
the properties of coarse and fine features. In the context of clustered
shape matching, results from prior research [Falkenstein et al. 2017;
Jones et al. 2015] demonstrate that an object’s apparent stiffness
increases with fewer, larger clusters (i.e. “coarse features”), while its
deformation space becomes richer with more, smaller clusters (i.e.
“fine features”). Given that a multi-resolution approach considering
both coarse and fine features works well for computer vision [Ma
et al. 2015] and cloth simulation [Kavan et al. 2011], it is reasonable
to extend this notion to clustered shape matching to allow for a
good blend of desired stiffness and deformation properties.

3 CLUSTERED SHAPE MATCHING
For completeness, we review the formulations for the shape match-
ing and clustered shape matching approaches. Readers familiar
with clustered shape matching may safely skip this section.

3.1 Shape Matching
Shape matching is an approach suggested by Müller and colleagues
[2005] for physics-based computer animation of soft bodies. A
graphical overview of this approach is presented in Figure 2. More
formally, an object is broken into a set of particles P. Each particle
𝑖 ∈ P has mass𝑚𝑖 and initial rest position 𝑟𝑖 . At each timestep, the
approach solves for the rotation matrix, R, and translation vector,
x̄ − r̄, that minimizes∑

𝑖

𝑚𝑖 ∥R (r𝑖 − r̄) − (x𝑖 − x̄) ∥2 . (1)

The name “shape matching” is fitting, since for each animation
frame, we try to match the rest shape to the deformed shape by
identifying the least-squares best-fit rigid transformation from the
rest shape to the deformed shape. This rigid transformation is given
by R and x̄ − r̄, both of which are found by minimizing Equation 1.

Müller and colleagues [2005] identify that the optimal translation
vector is given by the shape’s center-of-mass in the rest (r̄) and
world (x̄) space positions; that is, the optimal translation vector can
be expressed as

x̄ − r̄ = x𝑐𝑚 − r𝑐𝑚 =

∑
𝑖𝑚𝑖x𝑖∑
𝑖𝑚𝑖

−
∑

𝑖𝑚𝑖r𝑖∑
𝑖𝑚𝑖

. (2)

Since computing the optimal rotation R is more involved, we first
relax this problem by finding an optimal linear transformation A.
By denoting the relative location vectors q𝑖 = r𝑖 − r̄ and p𝑖 = x𝑖 − x̄
for each particle with respect to the shape’s rest and world center-
of-mass, respectively, Equation 1 can be rewritten as∑

𝑖

𝑚𝑖 ∥Aq𝑖 − p𝑖 ∥2 . (3)

Figure 2: ShapeMatching Overview: (a) An object is sampled
with a set of particles (in red) to compute rest positions. (b)
Particle positions (in blue) are updated in world space as the
particles are subjected to external forces and constraints. (c)
The particles’ goal positions (as dotted red circles) are com-
puted based on the best-fitting rigid transformation of par-
ticles from rest to world positions. (d) Hookean springs pull
the particles fromworld positions toward the goal positions.

By minimizing Equation 3, the optimal A can be computed as

A =

(∑
𝑖

𝑚𝑖p𝑖q𝑇𝑖

) (∑
𝑖

𝑚𝑖q𝑖q𝑇𝑖

)−1

. (4)

We can then compute R using the polar decomposition

A = RS =

(
UV𝑇

) (
VΣV𝑇

)
, (5)

where S = VΣV𝑇 is a symmetric matrix and UΣV𝑇 is the singular
value decomposition (SVD) of A.

Given R and x̄ − r̄, the goal position g𝑖 for each particle 𝑖 ∈ P
can be computed as

g𝑖 = R (r𝑖 − r̄) + x̄. (6)

To apply forces such as spring damping, a goal velocity v̂𝑖 for each
particle 𝑖 ∈ P can be computed as

v̂𝑖 =
∑

𝑗 ∈P𝑚 𝑗v𝑗∑
𝑗 ∈P𝑚 𝑗

. (7)

At each timestep, an explicit symplectic Euler integration scheme
is used to compute the velocity and position of each particle 𝑖 as

v𝑖 (𝑡 + ℎ) = v𝑖 (𝑡) + 𝛼
g𝑖 (𝑡) − x𝑖 (𝑡)

ℎ
+ ℎ 𝑓𝑒𝑥𝑡 (𝑡)

𝑚𝑖
, (8)

x𝑖 (𝑡 + ℎ) = x𝑖 (𝑡) + ℎv𝑖 (𝑡 + ℎ) . (9)
The second term on the right-hand side of Equation 8 is theHookean
spring force to pull the particle towards goal position g𝑖 . Here, 𝛼 is
the spring stiffness parameter. Müller and colleagues [2005] bound
this parameter to the range 0 ≤ 𝛼 ≤ 1. In the presence of no
additional external forces and when 𝛼 = 1, the particle is moved
directly to the goal position. When 𝛼 = 0, the velocity and position
of the particle is not affected by the spring force, and when 𝛼 < 1,
the particle moves towards the goal position.
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Figure 3: Overlapping Clusters: (a) An object is sampledwith
a set of particles (in red). (b) The particles are grouped into
overlapping clusters (in red, yellow, green, blue). Each par-
ticle contributes to the computations for the set of clusters
to which it is a member (here, aqua = 1 cluster, purple = 2
clusters, orange = 4 clusters).

3.2 Clustered Shape Matching
A natural extension to shape matching that was also introduced by
Müller and colleagues [2005] is clustered shape matching. Clustered
shape matching allows for a greater range of motion than basic
shape matching because it divides the particles P into a set of
overlapping clusters C, such that the formulations presented in
Section 3.1 are applied on a cluster-by-cluster basis. In fact, shape
matching is a restricted formulation of clustered shape matching,
such that the set of particles P are all contained in exactly one
cluster. Figure 3 graphically depicts a set of overlapping clusters
covering an object’s particles.

Overlapping clusters can be produced using the fuzzy c-means
algorithm discussed by Jones and colleagues [2015]. After randomly
selecting a subset of particles as initial seed locations, fuzzy c-means
performs the following iterative optimization steps:

(1) Compute spherical cluster membership and weight of par-
ticles in each cluster, such that a particle may be assigned to
more than one cluster.

(2) Update each cluster center to be the weighted center-of-mass
of the particles in that cluster.

When computing a particle’s contribution to cluster quantities,
we distribute the particle’s mass amongst the clusters for which it is
a member. This is accomplished by defining a weight𝑤𝑖,𝑐 for each
particle 𝑖 in cluster 𝑐 ∈ C, which indicates how much of particle
𝑖’s mass contributes to cluster 𝑐 , and then replacing𝑚𝑖 with𝑤𝑖,𝑐𝑚𝑖

in Equations 1-4 and when computing cluster mass, velocity, and
center-of-mass. For instance, the world center-of-mass x̄𝑐 for a
cluster 𝑐 ∈ C can be expressed as

x̄𝑐 =

∑
𝑖∈P𝑐

(
𝑚𝑖𝑤𝑖,𝑐

)
x𝑖∑

𝑖∈P𝑐
(
𝑚𝑖𝑤𝑖,𝑐

) . (10)

Once the goal position/velocity of each particle with respect to
each cluster is computed, the final goal position/velocity is com-
puted as a weighted average of the goal positions/velocities deter-
mined by each cluster for which it is a member; that is,

g𝑖 =
∑
𝑐∈C

𝑤𝑖,𝑐g𝑖,𝑐 , (11)

Algorithm 1: Constructing Multi-resolution Clusters
Data: P – set of particles

𝑁 – number of clusters
𝑟 – clustering radius
𝑚 – multiplier for radius at each level

Result:𝐻 – list containing set of clusters per level
1 ℓ = 0
2 𝐻 = [ ]
3 do
4 𝐶ℓ = FUZZY-C-MEANS (P, 𝑁 , 𝑟 )
5 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡 (𝐶ℓ )
6 ℓ += 1

7 𝑁 = max
{
⌊ 𝑁8 ⌋, 1

}
8 𝑟 ∗=𝑚

9 while |𝐶ℓ | > 1
10 return𝐻

Figure 4: Multi-resolution Clustering.

v̂𝑖 =
∑
𝑐∈C

𝑤𝑖,𝑐 v̂𝑖,𝑐 . (12)

Notice that the integration scheme for each particle’s velocity (Equa-
tion 8) and position (Equation 9) remains the same as that presented
in Section 3.1, except that Equation 11 is used as the goal position
of the particle.

4 METHODS
We first describe how we perform multi-resolution clustering and
then detail how we use it to compute dynamics.

4.1 Multi-resolution Clustering
Our approach performs multi-resolution clustering by iteratively
constructing coarser, overlapping clusters on the entire set of parti-
cles at each resolution level. More specifically, given a set of particles
P, an initial number of clusters 𝑁 , and a clustering neighbor ra-
dius 𝑟 , we perform fuzzy c-means clustering to generate the finest
resolution level of clusters. To construct coarser resolution levels,
we reduce the number of clusters 𝑁 , increase the clustering radius
𝑟 by a multiplicative factor𝑚, and perform fuzzy c-means on all
the particles to generate a coarser set of overlapping clusters. This
process is repeated until a single cluster encompasses the entire set
of particles. Our multi-resolution clustering approach is presented
graphically in Figure 4 and as pseudocode in Algorithm 1.

Algorithm 1 takes the initial number of clusters 𝑁 and the cor-
responding cluster neighbor radius 𝑟 for the finest clustering level
(i.e. level 0) as parameters. Good initial values for 𝑁 and 𝑟 must be
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Algorithm 2:Multi-resolution Timestep Computation
Data: P – set of particles

𝐻 – list containing set of clusters per level
𝑊 – list containing weights per level

Result: particle dynamics are updated for current timestep

1 for 𝑝 ∈ P do
2 Δv𝑝 = ⟨0.0, 0.0, 0.0⟩
3 end for

4 𝐿 = |𝐻 | − 1
5 for ℓ ← 𝐿 𝑑𝑜𝑤𝑛𝑡𝑜 0 do
6 Cℓ = 𝐻 [ℓ ]
7 𝑤ℓ =𝑊 [ℓ ]
8 TIMESTEP(P, Cℓ , 𝑤ℓ )
9 end for

10 elapsedTime += dt

selected on a case-by-case basis, but we typically set 𝑁 to be

𝑁 =

⌊ |P |
𝑛

⌋
,where 15 ≤ 𝑛 ≤ 50. (13)

We find that having, at a minimum, roughly 15-50 particles per
cluster produces reasonably small clusters while also allowing for
sufficient overlap to ensure stability of objects in simulation. The
initial value of 𝑟 is tuned accordingly, based on the value of 𝑁 , to
generate reasonable clustering results.

Furthermore, in line 7 of Algorithm 1, while the number of clus-
ters (𝑁 ) at each resolution level can be reduced by any arbitrary
factor, we choose to divide by 8. Intuitively, this choice is reasonable,
as we tend to subdivide a k-dimensional space into 2𝑘 partitions
and since we are working in three dimensions; this is similar to an
octree [Srihari 1984]. Finally, in line 8 of Algorithm 1, the neighbor
radius 𝑟 is multiplied by a factor 𝑚 (where 𝑚 > 1) to allow for
clustering of the next coarser resolution level. Setting the multi-
plier𝑚 to 2 corresponds to an 8-fold increase in spherical cluster
volume, but for some geometries, a slightly larger value improves
convergence of the clustering algorithm.

4.2 Applying Multi-resolution Clusters to
Dynamics Computations

In our approach, we perform a top-down traversal of the multi-
resolution clusters (i.e. from coarsest to finest resolution level)
and apply a weighted average of forces accumulated across all the
resolution levels. Pseudocode is presented in Algorithm 2.

The TIMESTEP function in Algorithm 2 follows directly from
formulations presented in Section 3 for one spatial scale. Within
the TIMESTEP function, we compute weighted particle dynamics
as defined in Algorithm 3. Here, 𝑘𝑑 is a spring damping constant.

Our approach ensures that the actual time integration is handled
at the finest level of clusters (i.e. level 0) after the contribution of
the coarser resolution levels are accounted for. Furthermore, in our
approach, we handle strain limiting [Bargteil and Jones 2014] and
collision handling [Jones et al. 2015] operations on the finest set of
clusters after each time integration step.

In weighted dynamics, assigning higher weight to any particular
resolution level will allow for a greater contribution of the forces
accumulated at that level, thereby influencing the behavior of the
particles to more closely resemble the behavior that occurs when

Algorithm 3: Weighted Particle Dynamics (TIMESTEP
in Algorithm 2)

Data: P – set of particles
Cℓ – set of clusters at level ℓ
𝑤ℓ – weight assigned to level ℓ

Result: weighted particle dynamics

1 for 𝑝 ∈ P do

2 Δv𝑝 += 𝑤ℓ ∗
(
𝑑𝑡 ∗ 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝛼

𝑑𝑡
∗

(
g𝑝 − x𝑝

)
+ 𝑘𝑑 ∗

(
v̂𝑝 − v𝑝

) )
3 if ℓ == 0 then
4 v𝑝 = v𝑝 + Δv𝑝
5 x𝑝 = x𝑝 + 𝑑𝑡 ∗ v𝑝
6 end if
7 end for

only that level is used. We present four intuitive weighting func-
tions: 1) uniform, 2) linear, 3) Gaussian falloff, and 4) polynomial
profile.

The simplest uniform weighting scheme assigns equal weight to
each resolution level; that is, each level ℓ has weight

𝑤ℓ = 1. (14)

The linear weighting scheme assigns a weight to each resolution
level using a linear function. For a scheme that assigns greater
weight to coarser levels, each resolution level ℓ has weight

𝑤ℓ = ℓ + 𝜖. (15)

Notice that 𝜖 is a positive constant to ensure that none of the
resolution levels have zero weight. To assign greater weight to finer
levels (with a total of L levels), we use

𝑤ℓ = (𝐿 − ℓ − 1) + 𝜖. (16)

The Gaussian falloff weighting scheme assigns a weight to each
resolution level according to a Gaussian distribution with a mean
of 0 and standard deviation of 1 [Kayri and Zirhlioglu 2009]. To
assign greater weight to finer levels, we use

𝑤ℓ =
1
√

2𝜋
𝑒−

1
2 ℓ

2
. (17)

Similarly, to assign greater weight to coarser levels (with a total of
L levels), we use

𝑤ℓ =
1
√

2𝜋
𝑒−

1
2 (𝐿−ℓ−1)2 . (18)

Finally, for our polynomial profile weighting scheme, we take in-
spiration from the polynomial form used by Kavan and colleagues
[2011] with cloth meshes. To assign greater weight to coarser levels
(with a total of L levels), we use

𝑤ℓ =

(
1 + 𝑏

(
ℓ

𝐿

))𝑐
. (19)

Similarly, to assign greater weight to finer levels, we use

𝑤ℓ =

(
1 + 𝑏

(
𝐿 − ℓ − 1

𝐿

))𝑐
. (20)

After applying any of the four weighting schemes, we normalize
each weight in order to ensure that the sum of weights across all
resolution levels is 1; that is, for each level ℓ out of a total of 𝐿 levels,
the weight𝑤ℓ is normalized to

𝑤ℓ =
𝑤ℓ∑𝐿−1
𝑖=0 𝑤𝑖

. (21)
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Figure 5: Object StabilityWhen Changing 𝛼 : (a) With a fixed
goal position (in red) and 𝛼 < 2, the particle’s position even-
tually converges towards the goal position. (b) With 𝛼 > 2
the particle’s position diverges from the goal position and
becomes unstable.

Notice that this normalization allows for the total spring stiffness
𝛼 and spring damping constants 𝑘𝑑 to be distributed across all
resolution levels, thereby ensuring stability even with the use of
multi-resolution clustering.

Our approach provides additional flexibility in defining weights
for each resolution level by enabling the user to manually set
weights as opposed to using the predefined weighting functions.
We ensure that the manually entered weights are also normalized
to sum to 1 by applying Equation 21.

We would also like to explicitly state an observation regarding
the range of values for the spring stiffness 𝛼 which, despite be-
ing used to generate results in prior research [Falkenstein et al.
2017; Jones et al. 2015, 2016], has not been formally addressed.
More specifically, Müller and colleagues [2005] bound 𝛼 to the
range 0 ≤ 𝛼 ≤ 1. However, by also allowing 1 < 𝛼 < 2, the time
integration computations in Equations 8-9 enable each particle’s
position to be “overshot” past the computed goal position while
still maintaining object stability. Furthermore, results in prior re-
search [Jones et al. 2015] seem to indicate that setting 1 < 𝛼 < 2
may allow for more expressive behavior. Figure 5 presents a simple,
one-dimensional example to show how allowing 𝛼 < 2 still enables
for stable behavior.

5 RESULTS
In this section, we discuss results produced by applying our multi-
resolution clustered shape matching approach, and highlight its
effectiveness/versatility with respect to the traditional/baseline ap-
proach (i.e. clustered shapematching at a single spatial scale). While
we present screenshots from our various animations and discuss
the changes observed by applying our approach, these results are
most apparent in the supplemental video. Our animations are com-
puted at 30Hz and rendered either as individual particles (colored
by nearest cluster) or as a smoothed mesh over the set of particles.
Details regarding specific parameter and weight configurations can
be found in the supplemental document.

We note that our results use Hookean springs for the underlying
dynamics and are not directly comparable to position-based dynam-
ics approaches such as the work of Chentanez and colleagues [2016].
The video results could also be improved by using high resolution
render meshes and linear blend skinning; collisions could also be
improved by using these meshes at much greater runtime cost. We
also note that damping parameters were intentionally set rather low
to highlight the dynamics, resulting in some examples appearing
“jiggly”; practical examples would likely use more damping.

5.1 Intuition for Selecting Reasonable
Animation Parameters

Our multi-resolution clustered shape matching approach allows
for many animation parameters to be tuned in order to generate
reasonable results. Table 1 summarizes these parameters, and pro-
vides intuition into how the animation will be affected by changing
the values of these parameters. It is important to note that there
is no universal parameter configuration that will work well for
all animations. In fact, the definition of a “reasonable” parameter
configuration is subjective, and depends on the desired behavior for
the animation. Nevertheless, the intuition in Table 1 allows for the
artist to construct reasonable estimates for the parameters, which
can then be finely tuned to generate the desired behavior.

5.2 Examples
Falling Ball. Our first didactic example demonstrates that our

multi-resolution approach allows for unique behavior not captured
by the baseline approach. Here, a ball is dropped vertically onto a
ground plane (see Figure 6). The ball is sampled with roughly 5K par-
ticles, and our approach computes three resolution levels (with 101,
12, and 1 cluster(s), respectively). We first consider three baseline
animations, which apply the clustering and dynamics parameters
of exactly one level of our multi-resolution approach. With 101
clusters, the ball degenerates into a puddle upon impact. With 12
clusters, the ball is slightly more stiff, although its behavior is quite
unpredictable, in that the ball does not return back to its original
shape and assume a rest position. With 1 cluster, the ball slightly
bounces on impact, but retains its spherical shape throughout the
animation.

With our multi-resolution approach, we consider six weighting
schemes: 1) polynomial favoring coarser levels [Eq. 19], 2) Gaussian
favoring coarser levels [Eq. 18], 3) uniform [Eq. 14], 4) linear favor-
ing coarser levels [Eq. 15], 5) manual weighting favoring middle
levels, and 6) Gaussian favoring finer levels [Eq. 17]. We find that
with these weighting schemes, the ball squashes in a puddle-like
manner upon impact (like 101-cluster baseline), while converging
towards a stable, ball-like shape (like 1-cluster baseline and unlike
12-cluster baseline). We also find that varying the weighting func-
tion used (and therefore the underlying distribution of weights)
allows for the behavior of the ball to be intuitively altered. For in-
stance, the manual weighting scheme demonstrates added fluidity
in the ball’s behavior when compared to using a Gaussian (favoring
coarse levels) scheme.

Hovering Cube. Our second didactic example further demon-
strates the robustness of our approach. Here, a cube floating in
zero-gravity is stretched by a factor of 2 in the x-direction and
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Table 1: Tunable Parameters and Expected Behavior

Type Parameter Description and Expected Behavior

Clustering

𝑁

◦ Number of overlapping clusters over particles
◦ Valid Values: 𝑁 > 0
◦ As 𝑁 ↑, object deformation richness ↑
◦ As 𝑁 ↓, object stiffness ↑
◦ An initial value for N at the finest resolution level with

our approach is ⌊ |P |𝑛 ⌋,where 15 ≤ 𝑛 ≤ 50

𝑟

◦ Radius of spherical clusters
◦ Valid Values: 𝑟 > 0
◦ As 𝑟 ↑, clusters are larger and may poorly fit object

geometry, but FUZZY-C-MEANS is likelier to converge
◦ As 𝑟 ↓, clusters are smaller and may better fit object

geometry, but FUZZY-C-MEANS may not initially con-
verge

𝑚

◦ Cluster radius multiplier
◦ Valid Values:𝑚 > 1
◦ Tuning𝑚 influences the cluster radius at each resolution

level, which is bounded by intuition for 𝑟

Elasticity

𝛼

◦ Hookean spring stiffness pulling particles towards goal
positions

◦ Valid Values: 0 ≤ 𝛼 ≤ 2
◦ If 𝛼 = 0, no Hookean force is applied
◦ If 0 < 𝛼 < 1, particles are pulled towards goal position
◦ If 𝛼 = 1, particles move directly to goal position (i.e.

rigid-body dynamics)
◦ If 1 < 𝛼 ≤ 2, particles’ positions “overshoot” past goal

position, but may allow for more expressive behavior

𝑘𝑑

◦ Spring damping force constant
◦ Valid Values: 0 ≤ 𝑘𝑑 ≤ 1
◦ As 𝑘𝑑 ↑, particles’ velocities approach the weighted av-

erage of velocities for the clusters in which the particles
are a member, and objects tend to be less “jiggly”

𝑔𝑟𝑎𝑣𝑖𝑡𝑦

◦ Gravitational force constant
◦ Valid Values: 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ≥ 0
◦ As 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ↑, the gravitational force on each particle

(and therefore object) ↑

Weights 𝑤ℓ

◦ Contribution of forces at resolution level ℓ
◦ Valid Values:𝑤ℓ ≥ 0
◦ As𝑤ℓ ↑ relative to weights for other levels, object behav-

ior is increasingly similar to applying baseline approach
with clustering parameters at level ℓ

Figure 6: Frames from Falling Ball Animation.

released (see Figure 7). The cube is sampled with roughly 1.3K
particles, and our approach computes three resolution levels (with
66, 8, and 1 cluster(s), respectively). Like the previous example,

Figure 7: Frames from Hovering Cube Animation.

we first consider three baseline animations. With 66 clusters, the
cube demonstrates fluid motion, especially around the corners, and
some rotational movement. With 8 clusters, the cube demonstrates
some fluid motion around the corners, but otherwise is stiff with no
rotational movement. With 1 cluster, the cube demonstrates very
rigid motion and no rotational movement.

With our multi-resolution approach, we first consider three
weighting schemes: 1) polynomial favoring finer levels [Eq. 20],
2) linear favoring finer levels [Eq. 16], and 3) Gaussian favoring
finer levels [Eq. 17]. We find that with all three weighting schemes,
the cube demonstrates fluidity in motion, although the behavior is
slightly damped (with respect to 66-cluster baseline). We also find
that the cubes demonstrate different amounts of rotational move-
ment, which is in part due to the lack of rotational movement at
coarser resolution levels. We also consider three additional weight-
ing schemes: 1) uniform [Eq. 14], 2) polynomial favoring coarser
levels [Eq. 19], and 3) linear favoring coarser levels [Eq. 15]. We find
that with these weighting schemes, the cube demonstrates even
more rigid motion (like 1-cluster and 8-cluster baselines), while
additionally offering some level of rotational movement (like 66-
cluster baseline).

Falling Bunny. Our next example uses more complex geometry
to demonstrate the changes in animation behavior produced by
our multi-resolution approach when tuning parameters of our pre-
defined weighting functions. Here, a bunny is dropped vertically
into a cavity defined by three planes (see Figure 8). The bunny is
sampled with roughly 16.5K particles, and our approach computes
four resolution levels (with 330, 41, 5, and 1 cluster(s), respectively).
We begin by considering two baseline animations as a basis for
the range of possible motions. With 1 cluster, the bunny bounces
slightly upon impact with the ground plane, but retains its stiff
shape. With 330 clusters, the bunny becomes puddle-like on impact
and demonstrates rather unstable behavior.

With our multi-resolution approach, we first consider changing
the exponent parameter 𝑐 in the polynomial (favoring finer levels)
weighting scheme [Eq. 20] while keeping 𝑏 fixed at 10. We find that
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Figure 8: Frames from Falling Bunny Animation.

as the value of 𝑐 increases from 0 (i.e. uniformweighting), the bunny
demonstrates increasingly fluid-like behavior upon impact while
remaining stable (unlike 330-cluster baseline). Also, by increasing 𝑐
(and therefore weight towards finer levels), the bunny demonstrates
increasing levels of rotational movement (like 330-cluster baseline).
We also consider changing the parameter 𝜖 when using the linear
(favoring finer levels) weighting scheme [Eq. 16]. We find that by
increasing 𝜖 from 0.01 to 1 to 100, the overall stiffness and rigidity
of the bunny upon impact is improved. In fact, notice that as 𝜖
becomes large, the behavior of the bunny approaches that when a
uniform weighting scheme is used.

Ball Colliding Into Wall. Our fourth example considers throwing
a ball at a wall in zero-gravity (see Figure 9). The ball and wall are
each sampled with 1K particles, and our approach computes three
resolution levels per object (with 66, 8, and 1 cluster(s), respectively).
We begin by considering three baseline animations. Due to collision
proxies being poorly defined when a small number of large clusters
is used with the baseline approach, with 1 cluster per object, the
ball is far away from the wall when it collides with the collision
proxies and bounces off, while with 8 clusters per object, the ball
comes close to the wall, although it does not interact with the wall
particles during collision. With 66 clusters per object, the collision
proxies are well-defined and the ball interacts with the wall upon
collision, but the ball jitters in a fluid-like motion as it moves away
from the wall.

With our approach, since we handle collisions at the finest level
of clusters, we can use the same collision proxies as the 66-cluster

Figure 9: Frame from Ball Colliding Into Wall Animation.

baseline while assigning greater weight towards the coarser resolu-
tion levels for the ball so that it remains rigid upon impact (Config.
#1). We also manually adjust the weights for the wall to favor the
middle (Config. #2) and coarsest (Config. #3) levels, respectively, and
find that with a weighting scheme that favors coarser resolution
levels, the wall appears slightly more stiff, gets pushed by the ball
upon impact, and somewhat dampens the speed at which the ball
bounces away from it after impact. Additionally, we demonstrate
that by increasing the spring damping 𝑘𝑑 from 0.1 to 0.3 to 0.5
for Config. #1, we can reduce jittering and produce more realistic
results; we reiterate that some of our examples are intentionally
jittery to better highlight differences in animation behavior.

Three Bunnies Collide. In this example, three bunnies collide in
zero-gravity, with the left and right bunnies initially moving to-
wards a stationary middle bunny (see Figure 10). Each of these
bunnies is sampled with roughly 4.1K particles, and our approach
computes four resolution levels per object (with 206, 25, 3, and 1
cluster(s), respectively). With the baseline animation of 206 clusters
per object, we find that upon and after impact, each of the bunnies
demonstrate some jittering behavior, such as around the ears. With
our approach, we first use Gaussian weighting [Eq. 17] and spring
stiffness 𝛼 = 1.5 for the left/right bunnies, and polynomial weight-
ing [Eq. 19] and 𝛼 = 0.75 for the middle bunny (Config. #1). We
also consider a uniform weighting [Eq. 14] scheme with 𝛼 = 1.5
for all the bunnies (Config. #2). We find that the primary difference
with respect to the different configurations is that the direction
and fluidity of motion for each bunny upon impact changes due
to the differences in the material properties caused by varying the
parameters per object.

Plinko. In our next example, a ball falls vertically while interact-
ing with cylindrical rods, similar to a plinko board (see Figure 11).
The ball is sampled with roughly 5K particles, and our approach
computes three resolution levels (with 101, 12, and 1 cluster(s),
respectively). We begin by considering three baseline animations.
With 1 cluster, the ball remains stiff and retains its shape upon
impact with the ground plane, but instead of bouncing between the
rods as desired, it travels directly through them. With 12 clusters,
the ball more fluidly bounces between the rods towards the left side
of the screen, but it demonstrates constant vibrating movement
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Figure 10: Frame from Three Bunnies Collide Animation.

Figure 11: Frames from Plinko Animation.

upon impact with the ground plane. With 101 clusters, the ball is
unable to retain its shape as it bounces between the rods towards
the right side of the screen, eventually degenerating into a puddle
upon impact with the ground.

With our approach, we manually adjust the weights for the
ball to favor the coarsest (Config. #1), middle (Config. #2), and
finest (Config. #3) levels, respectively. We find that with all three
weighting schemes, the ball is able to bounce between the rods
while retaining its relative shape, and converges to a rest position
upon impact with the ground plane, unlike any of the baseline
animations. As such, our approach allows for desired behavior that
is not apparent when applying the baseline approach.

Armadillo. In our final example, an armadillo falls vertically onto
a pyramid of cylinders (see Figure 1). The armadillo is sampled with
roughly 125K particles and our approach computes six resolution

levels (with 8192, 1024, 128, 16, 2, and 1 cluster(s), respectively).
This is our largest example, using a particle set roughly five times
larger than that used in recent clustered shape matching research
[Jones et al. 2016]. Like previous examples, we begin by considering
six baseline animations. As the number of clusters increases, the
armadillo’s behavior becomes increasingly dynamic/fluid. With 1
and 2 clusters, the armadillo remains stiff (apart from some jittering
behavior around the leg) as it collides with the cylinders and falls
onto its back. With 16 and 128 clusters, the armadillo falls onto its
face while retaining its original shape. With both 1024 and 8192
clusters, the armadillo behaves fluid-like upon impact; with 8192
clusters, it also degenerates into a puddle.

With our approach, we first apply a linear weighting scheme that
favors finer resolution levels [Eq. 16]. We find that the armadillo
moves towards the left side of the screen and performs a somer-
sault. We also apply a manual weighting scheme that highly favors
the finest resolution level, slightly favors the coarsest levels, and
assigns minimal weight to the remaining levels. We find that the
armadillo eventually falls backwards onto its back before rolling
into a position with its legs up in the air and its arms wide across
the ground. In both cases, by performing a weighted contribution of
the clustering levels, we demonstrate behavior that is not apparent
in the baseline approach. Due to the larger number of particles in
this example, the timing results for the baseline animations did
not correlate with the number of clusters; with a large set of small
clusters, particles belonged to fewer clusters, resulting in greater
sparsity.

5.3 Timing
Table 2 presents the dynamics timing details for the animations
conducted in this paper, all of which were conducted on a machine
with 8GB RAM and a 2.50GHz Intel i7-6500U CPU. We note that our

Table 2: Dynamics Timing Details

Example Animation Timing (ms per frame)

Falling Ball
(5,098 particles)

Baseline: 1 cluster ∼3.95
Baseline: 12 clusters ∼7.93
Baseline: 101 clusters ∼9.50

Ours (average) ∼10.82

Hovering Cube
(1,331 particles)

Baseline: 1 cluster ∼0.24
Baseline: 8 clusters ∼0.45
Baseline: 66 clusters ∼0.99
Ours (average) ∼1.27

Falling Bunny
(16,510 particles)

Baseline: 1 cluster ∼22.38
Baseline: 330 clusters ∼89.92

Ours (average) ∼108.92

Ball Colliding Into Wall
(1,000 particles per object)

Baseline: 1 cluster per object ∼0.64
Baseline: 8 clusters per object ∼2.93
Baseline: 66 clusters per object ∼7.59

Ours (average) ∼8.68
Three Bunnies Collide

(4,131 particles per object)
Baseline: 206 clusters per object ∼58.83

Ours (average) ∼63.90

Plinko
(5,098 particles)

Baseline: 1 cluster ∼5.15
Baseline: 12 clusters ∼8.56
Baseline: 101 clusters ∼10.75

Ours (average) ∼12.20

Armadillo
(124,631 particles)

Baseline: 1 cluster ∼235.36
Baseline: 2 clusters ∼386.97
Baseline: 16 clusters ∼1254.37
Baseline: 128 clusters ∼1718.34
Baseline: 1024 clusters ∼1456.65
Baseline: 8192 clusters ∼1067.08

Ours (average) ∼1818.50
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codebase is designed for research, not performance, and runs on a
single CPU, but that the overhead of our approach is minimal. From
the timing data, we find that our approach takes longer to compute
dynamics per frame compared to the baseline approach, which
essentially computes a single scale. However, our approach takes
less time than the sum of computing each spatial scale separately,
likely due to the fact that we apply strain limiting only at the finest
set of clusters. Nevertheless, we believe this additional cost is justi-
fied given the enhanced behavior enabled by our multi-resolution
clustering approach.

6 CONCLUSIONS
A limitation of our multi-resolution approach is that the dynamics
computations for each timestep take longer than that when apply-
ing the traditional approach. However, due to the method in which
we compute particle dynamics, our approach can be parallelized by
simultaneously computing the contribution of each resolution level.
Furthermore, our code is limited to a sequential process on a CPU,
but it may be possible to map our framework to a GPU, similar to
what has already been done for shape matching and position-based
dynamics (PBD) [Chentanez et al. 2016; Fratarcangeli and Pellacini
2013]. As such, considering methods of parallelizing our clustered
shape matching code may be an interesting avenue for future work.
We also found that our different strategies for automatically setting
the stiffness at various levels yielded similar results, any of which
should be acceptable in practice. We did not consider changing
damping parameters between resolution levels, but this would be
straightforward.

One fundamental limitation of the clustered shape matching
approach is the bounds on the stiffness 𝛼 . We initially hoped our
multi-resolution approach would support very stiff materials, but
because 𝛼 is bounded by 2, such materials are not feasible unless
the timestep is reduced. The “jiggliness” of our objects could be
reduced by increased damping, but we chose to keep damping low
to moderate because with larger damping values, the influence of
cluster size becomes more difficult to demonstrate.

A recurring limitation noted in prior work is a lack of theoretical
underpinnings for clustered shape matching. More specifically, due
to the lack of mathematical tools to analyze the clustered shape
matching approach, Jones and colleagues [2016] state that there is
no analytical understanding as to how the method behaves when
the number of particles, number of clusters, cluster radius, and/or
timestep is varied. This concern carries forward to our approach,
which applies clusters at multiple spatial scales. However, as Jones
and colleagues [2016] also note, the finite element method was
used for several decades before a mathematical framework was
developed to analyze its properties. As such, this limitation is in no
way a hindrance to the practicality and versatility of the clustered
shape matching framework.

As shown in this paper, we have expanded the clustered shape
matching framework by introducing a multi-resolution clustering
approach for enhancing the elastic behavior of objects in animation.
We showed that objects animated using our approach demonstrate
an increased stiffness that is not visible when using only a large set
of small clusters in the traditional approach, as well as relatively
richer deformations that are not apparent when using only a small

set of large clusters. We have also allowed for greater flexibility
in tuning animation behavior by providing the ability to specify
properties such as spring stiffness and weights on a per-object basis.
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