
Efficient Collision Detection for Example-Based Deformable
Bodies

Ben Jones
University of Utah

Joshua Levine
University of Arizona

Tamar Shinar
University of California, Riverside

Adam W. Bargteil
University of Maryland, Baltimore County

ABSTRACT
We introduce a new collision proxy for example-based deformable
bodies. Specifically, we approximate the deforming geometry as
a union of spheres. During pre-computation we perform a sphere
packing on the input, undeformed geometry. Then, for each ex-
ample pose, we move and resize the spheres to approximate the
example. During runtime we blend together these positions and
radii, using the same skinning weights we use for the geometry. We
demonstrate the method on a car crash example, where we achieve
an overall speedup of 5-20 times, depending on the resolution of
the collision proxy geometry.

CCS CONCEPTS
•Computingmethodologies→ Simulation by animation;Phys-
ical simulation;

KEYWORDS
Example-based Simulation, Collision Detection, Skinning, Local
Blending

ACM Reference Format:
Ben Jones, Joshua Levine, Tamar Shinar, and Adam W. Bargteil. 2017. Ef-
ficient Collision Detection for Example-Based Deformable Bodies. In Pro-
ceedings of MiG ’17. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3136457.3136469

1 INTRODUCTION

Robust detection and handling of collisions is a vital component
of simulation systems. While most render geometry is represented
using triangle meshes, that representation poses significant chal-
lenges for collision detection and response. While techniques and
software exist that work directly with triangle meshes, they often
require very small timesteps, are computationally expensive, and
must avoid pitfalls arising from finite-precision arithmetic. As a
result, interactive simulators often use collision proxy shapes that
approximate the shape of the render mesh and are more stable
and numerically efficient. These proxy shapes are commonly con-
structed as a union of convex shapes, such as spheres or discrete

MiG ’17, November 8–10, 2017, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
MiG ’17 , https://doi.org/10.1145/3136457.3136469.

oriented polytopes (K-DOPs). Unfortunately, computing such a de-
composition can be computationally expensive, so this approach
is insufficient for simulating objects that can undergo arbitrary
deformations.

In this work, we describe a method for computing and maintaining
such a convex decomposition for example-based deformable bodies.
At run time these objects deform into a blend of artist-provided
deformations. Since the example deformations are known a priori,
we can precompute convex decompositions for each deformation
and efficiently compute the deformed convex decomposition as a
blend of the example proxies.

2 RELATEDWORK

A comprehensive review of collision handling is beyond the scope
of this paper, but we recommend the survey by Teschner and col-
leagues [2004]. Because collision detection with convex geometry
is far simpler and faster than geometry with concavities, static ob-
jects are typically broken up into a convex decomposition—a set
of convex pieces that are equivalent to the original geometry. Un-
fortunately, this approach breaks down with deforming geometry
not only because the intial decomposition no longer represents the
deformed geometry, but also because deformation can introduce
new concavities, so simply updating the collision geometry re-
quires more complex and expensive collision detection algorithms.
One approach to collision detection of deformable bodies in the
context of real-time simulation is to develop highly optimized algo-
rithms [Civit-Flores and Susı́n 2015]. Another approach is to adopt
the classic technique of creating simple collision proxies for com-
plex geometry [Baraff and Witkin 1997; Hubbard 1996]. Typically
these proxies are made up of many convex pieces. Unfortunately,
when geometry deforms these proxies are no longer valid and must
be updated. Like work with model reduced elastic bodies [Barbic
and James 2010; Kim and James 2011] and the work of Spillmann
and colleagues [2007], who assume a deformation model based on
shape matching, we take advantage of the fact that our deformations
are not entirely general. In our application, runtime deformations
are determined by a blend of example deformations, enabling us
to derive a simple and efficient approach for deforming collision
proxies.

3 METHOD

Our method decomposes an arbitrary simulation object, whose
surface is represented as a triangle mesh, into a set of overlapping

https://doi.org/10.1145/3136457.3136469
https://doi.org/10.1145/3136457.3136469
https://doi.org/10.1145/3136457.3136469

MiG ’17, November 8–10, 2017, Barcelona, Spain Ben Jones, Joshua Levine, Tamar Shinar, and Adam W. Bargteil

Step RB simulator
with sphere proxies Deform objects with sphere-based impulses Modulate coefficient

of restitution

…

Authoring

Input
geometry

Rig

Characteristic
Deformations

Project onto
examplesImpulses Update

example weights
Propagate to

neighborhood

Simulation

…

Figure 1: Overview of the authoring and simulation process, depicting the example-based deformation system of Jones and colleagues combined
with our novel collision proxy geometry (yellow).

spheres. As the object deforms at runtime, the spheres are moved
and resized so that the surface of their union approximates the
deformed geometry of the object. To implement this efficiently, our
algorithm consists of a precomputation step and an efficient run
time update.

3.1 Input and Notation

As input, our method requires:

∙ an undeformed triangle mesh, M0

∙ a set of 𝑒 deformed meshes, M1, . . . ,M𝑒, the example defor-
mations of the object

∙ a function, 𝑓 that maps an interior vertex 𝑥0 from inside M0

to its deformed position in each M𝑖.

In our implementation, all meshes share the same topology. We
tetrahedralize M0 before deforming it into meshes M1, . . . ,M𝑒,
and 𝑓 is computed by barycentric interpolation. However, this
implementation choice is not required by our method.

3.2 Simulator Dynamics

To motivate the remainder of our method, we will briefly describe
the simulation framework we used in our implementation.

We implemented our collision detection and response system within
the example-based plastic deformation simulator of Jones and col-
leagues [2016]. For completeness, we provide a brief overview of
the simulation method but refer the reader to [Jones et al. 2016] for
further details.

Deformed meshes, Mi are computed by rigging the undeformed
mesh, M0, with control handles and using linear blend skinning. To
ease authoring, we tetrahedralize the mesh and compute skinning
weights via the method of Jacobson and colleagues [2011]. Since
the interior tetrahedral mesh vertices are skinned as well, we can
compute our map, 𝑓 , by using barycentric interpolation on the
tetrahedral vertices.

The simulator is based on the Bullet rigid body simulator. The mo-
tion of objects is modeled as completely rigid (i.e., the degrees of
freedom are a single translation and rotation per object). Plastic

deformation is incorporated by modifying the shape of the object
based on the collision impulses generated during simulation. We
make use of Bullet’s compound collision shape which uses a bound-
ing volume tree to accelerate collision queries.

At each tetrahedral mesh vertex, we compute the skinned position
via linear blend skinning. However, the handle transforms vary
per-vertex. The handle transform at a given point is computed by
blending the handle transforms of the example poses.

While our prototype is built on a simulator that incorporates only
plastic deformation, our approach is applicable to elastic objects
as well. Also, our method is applicable to any deformation model
where a few representative or extreme deformations are known in
advance and can be locally interpolated.

3.3 Precomputation

Our precomputation step outputs a set of spheres, S0, as well as 𝑒
deformations of that set, S𝑖, 𝑖 ∈ [1..𝑒]. Each deformation contains
the same number of spheres, with modified positions and radii.
For each sphere set, S𝑖, the surface of their union approximate the
corresponding mesh, M𝑖.

3.3.1 Initial Collision Proxy (S0). We begin by computing S0

from M0 by adapting the approach of Budsberg and colleagues
[2014]. We compute a signed distance field of M0 and iteratively
add spheres to the set S0. Each sphere we add is centered at the
minimum of the signed distance field, following the convention that
interior points are negative and hence the center is maximally far
from the surface. We set the radius of this sphere to be the minimum
of a user-defined maximum radius and the original distance from
the center to the surface. The signed distance field is then updated
by setting the values at all points inside the sphere to be 0. This
prevents our algorithm from creating a new sphere whose center
lies within an existing sphere, resulting in a proxy with fewer
spheres.

This procedure terminates when the next sphere to be added would
have a radius smaller than a user-defined minimum size or the total
number of spheres exceeds a user-defined maximum. Note that
since sphere radii are determined by the distance to the triangle

Efficient Collision Detection for Example-Based Deformable Bodies MiG ’17, November 8–10, 2017, Barcelona, Spain

Figure 2: Cars crash into each other after launching off ramps. From left to right, 320, 114, and 66 spheres per car. Decreasing the number of
spheres improves performance but increases error, visualized in red, below.

mesh, rather than the distance to existing spheres, the spheres will
overlap and be entirely contained with the surface.

The number and size of spheres is controlled by modifying the
resolution of the signed distance field as well as the three user
parameters for total number of spheres and the minimum and maxi-
mum allowed sphere radii. These controls allow the user to trade off
between the accuracy of the collision proxy and the computational
cost of collision detection. For the examples in this paper, we set
the maximum number of spheres to be infinity, so the the minimum
sphere radius is the only active termination criteria. In a resource
constrained application, the maximum number of spheres may be
a more convenient parameter.

3.3.2 Example Collision Proxies (S𝑖). Once S0 is computed, the
deformed sphere sets S𝑖 are computed. For each sphere in S0, the
corresponding sphere center in S𝑖 is computed via the map, 𝑓 . Its
radius is computed via the same procedure as above: the minimum
of the user defined maximum radius and the distance to M𝑖.

As centers move, it becomes possible that the sets S𝑖 could contain
gaps. This situation is mitigated by the fact that the sphere overlaps
are typically deep in S0. In our examples, gaps that did occur did
not affect simulation quality(errors are quantified in Figures 5 and
6). Gaps could also be reduced by using a smaller maximum radius
value, at the cost of requiring additional spheres.

3.4 Runtime Collision Proxies

As the object deforms, we update the position and radii of the
spheres by blending the precomputed deformations S𝑖. We assume
that the current deformation of the object is a barycentric blend of
the undeformed pose and the 𝑒 example deformations. We compute
the current sphere positions and radii as a barycentric blend of
S𝑖, 𝑖 ∈ [0..𝑒].

These blends need not be global. In our implementation, each tetra-
hedral mesh vertex stores the barycentric coordinates of the blend
at that point. To deform our spheres, we use the barycentric coor-
dinates of the nearest tetrahedral mesh vertex in the initial pose.

4 RESULTS AND DISCUSSION

Table1 gives timing information for the example in Figure 2, where
a number of cars are launched at each other. Notably, even with the
highest resolution collision proxies, our approach results in a 5×
speedup; with a very coarse but still passable approximation, we
achieve a 20× speedup relative to triangle based collision detec-
tion with approximately 1500 triangles per car. Figure 5 plots the
median and maximum error during the simulation, computed as
the distance from input mesh vertices to the surface of the sphere
proxy surface. Because the dynamics and deformations are driven
by collisions, the resulting animations differ slightly. Figure 3 shows
an additional example where a car crashes into a pyramid of barrels.

MiG ’17, November 8–10, 2017, Barcelona, Spain Ben Jones, Joshua Levine, Tamar Shinar, and Adam W. Bargteil

Figure 3: Car crash scene with render geometry (left) and collision
proxies overlaid on render geometry (right)

Table 1: Timing in ms for 10 seconds of animation for the car crash
example. For comparison, the final row gives timing information
for the method of Jones and colleagues [2016]. Even at the highest
resolution our collision proxies reduce computation time by a factor
of five.

Spheres Rigid Body Sim Total
320 29.4 37.3
114 10.4 13.7
66 6.6 10.5
Triangle Mesh 151.9 210.0

In Figure 4, we show a set barrels being dropped onto a loading dock.
The number of spheres decreases from left to right by increasing the
minimum allowed sphere radius. With fewer spheres, the collision
proxies do not fill in the sharp corners of the barrel, but still produce
reasonable results. The median and maximum errors are plotted in
Figure 6.

We note that because our approach requires a water-tight input
mesh to create the distance field, our proxies are not based on
the high-resolution render geometry, but rather a coarser, water-
tight approximation. As a result, some spheres can be seen poking
through the render geometry of the car.

4.1 Future Work

While our method improves performance relative to the baseline
of performing triangle-mesh collisions, there is room for further
optimization. In particular, it may be possible to accelerate collision
queries using a custom bounding volume structure rather than the
more general implementation in Bullet.

While the size of gaps between spheres is easily controllable for the
undeformed mesh, M0, the sphere approximation is less accurate
during deformation, as shown in Figures 5 and 6. To improve the
surface approximation in the deformed meshes, it may be possible
to construct a signed distance for the deformed meshes and spheres.
Then, by following the method from Section 3.3.1, we can compute
spheres that fill in gaps in the deformed shape, which can then be

Figure 4: Barrels with a decreasing number of spheres dropped on a
loading dock. The top row shows the error measured as the distance
from the mesh to the sphere proxy surface. The barrel with the fewest
spheres has the highest error near the sharp edges of the barrel.

mapped back to the rest space via the inverse map, 𝑓−1. This would
increase the accuracy of the approximation at the cost of additional
precomputation, and the use of more spheres.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Founda-
tion under Grant No. IIS-1314896, IIS-1654221, and IIS-1314813.

REFERENCES

[Baraff and Witkin 1997] David Baraff and Andrew Witkin (Eds.).
1997. Physically Based Modeling: Principles and Practice. ACM
SIGGRAPH 1997 Course Notes, Vol. 19. ACM SIGGRAPH.

[Barbic and James 2010] Jernej Barbic and Doug L. James. 2010.
Subspace self-collision culling. ACM Trans. Graph. 29, 4 (2010),
81:1–81:9. https://doi.org/10.1145/1833351.1778818

[Budsberg et al. 2014] Jeff Budsberg, Nafees Bin Zafar, and Mihai
Aldén. 2014. Elastic and Plastic Deformations with Rigid Body
Dynamics. In ACM SIGGRAPH Talks. Article 52, 1 pages. https:
//doi.org/10.1145/2614106.2614132

[Civit-Flores and Susı́n 2015] O Civit-Flores and Antonio Susı́n.
2015. Fast contact determination for intersecting deformable
solids. In Proceedings of the 8th ACM SIGGRAPH Conference on
Motion in Games, MIG 2015, Paris, France, November 16-18, 2015.
205–214.

https://doi.org/10.1145/1833351.1778818
https://doi.org/10.1145/2614106.2614132
https://doi.org/10.1145/2614106.2614132

Efficient Collision Detection for Example-Based Deformable Bodies MiG ’17, November 8–10, 2017, Barcelona, Spain

0 100 200 300 400 500 600
frame

0.040

0.045

0.050

0.055

0.060

0.065

0.070

e
rr

o
r

Median Error

0 100 200 300 400 500 600
frame

0.060

0.065

0.070

0.075

0.080

0.085

0.090

e
rr

o
r

Median Error

0 100 200 300 400 500 600
frame

0.08

0.09

0.10

0.11

0.12

e
rr

o
r

Median Error

0 100 200 300 400 500 600
frame

0.15

0.20

0.25

0.30

0.35

e
rr

o
r

Maximum error

0 100 200 300 400 500 600
frame

0.20

0.25

0.30

0.35

e
rr

o
r

Maximum error

0 100 200 300 400 500 600
frame

0.30

0.35

0.40

0.45

0.50

0.55

e
rr

o
r

Maximum error

Figure 5: Median error (top row), and maximum error (bottom row) for the animation from Figure 2 with (left to right) 320, 114, and 66 spheres.
Error measured as distance in meters from the triangle mesh vertices to the sphere proxy surface. The car is 5.25 meters long. Each color represents
one of the 8 cars in the scene.

0 50 100 150 200 250 300
frame

0.015

0.020

0.025

0.030

0.035

e
rr

o
r

Median Error

364 spheres
231 spheres
152 spheres
99 spheres
81 spheres
61 spheres
39 spheres

0 50 100 150 200 250 300
frame

0.06

0.08

0.10

0.12

0.14

0.16

e
rr

o
r

Maximum error

364 spheres
231 spheres
152 spheres
99 spheres
81 spheres
61 spheres
39 spheres

Figure 6: Median error (left), and maximum error (right) for the animation from Figure 4. Error measured as distance in meters from the triangle
mesh vertices to the sphere proxy surface. The barrel is 0.72 meters tall.

[Hubbard 1996] Philip M Hubbard. 1996. Approximating poly-
hedra with spheres for time-critical collision detection. ACM
Transactions on Graphics (TOG) 15, 3 (1996), 179–210.

[Jacobson et al. 2011] Alec Jacobson, Ilya Baran, Jovan Popović, and
Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-time
Deformation. ACM Trans. Graph. 30, 4 (2011), 78:1–78:8.

[Jones et al. 2016] Ben Jones, Nils Thuerey, Tamar Shinar, and
Adam W. Bargteil. 2016. Example-based plastic deformation of
rigid bodies. ACM Trans. Graph. 35, 4 (2016), 34.

[Kim and James 2011] Theodore Kim and Doug L. James. 2011.
Physics-based Character Skinning using Multi-Domain Subspace

Deformations. In Proceedings of the 2011 Eurographics/ACM SIG-
GRAPH Symposium on Computer Animation, SCA 2011, Vancouver,
BC, Canada, 2011. 63–72.

[Spillmann et al. 2007] Jonas Spillmann, Markus Becker, and
Matthias Teschner. 2007. Efficient updates of bounding sphere hi-
erarchies for geometrically deformable models. Journal of Visual
Communication and Image Representation 18, 2 (2007), 101–108.

[Teschner et al. 2004] M. Teschner, S. Kimmerle, Gabriel Zachmann,
B. Heidelberger, Laks Raghupathi, A. Fuhrmann, Marie-Paule
Cani, François Faure, N. Magnenat-Thalmann, and W. Strasser.
2004. Collision Detection for Deformable Objects. In Eurographics
2004, State-of-the-Art Report. Eurographics Association, 119–135.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Input and Notation
	3.2 Simulator Dynamics
	3.3 Precomputation
	3.4 Runtime Collision Proxies

	4 Results and Discussion
	4.1 Future Work

	References

