
Dynamic Sprites

Ben Jones
University of Utah

Jovan Popovic
Adobe Systems, Inc.

James McCann
Adobe Systems, Inc.

Wilmot Li
Adobe Systems, Inc.

Adam Bargteil
University of Utah

Figure 1: A set of fearless stuntmen are fired out of a cannon. The dynamic sprites interact to create a rich, stylized animation.

Abstract

Traditional methods for creating dynamic objects and characters
from static drawings involve careful tweaking of animation curves
and/or simulation parameters. Sprite sheets offer a more drawing-
centric solution, but they do not encode timing information or the
logic that determines how objects should transition between poses
and cannot generalize outside the given drawings. We present an
approach for creating dynamic sprites that leverages sprite sheets
while addressing these limitations. In our system, artists create a
drawing, deform it to specify a small number of example poses,
and indicate which poses can be interpolated. To make the object
move, we design a procedural simulation to navigate the pose man-
ifold in response to external or user-controlled forces. Powerful
artistic control is achieved by allowing the artist to specify both the
pose manifold and how it is navigated, while physics is leveraged to
provide timing and generality. We used our method to create sprites
with a range of different dynamic properties.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics Editors

Keywords: physics-based animation

1 Introduction

Drawing pictures is one of the oldest and most fundamental forms
of human communication. Ever since our ancestors began creating
cave paintings in prehistoric times, humans have been making pic-
tures to tell stories, explain ideas and express emotions. Over the
years, technical advances have provided artists with an ever expand-
ing arsenal of tools and techniques for creating and editing images,
and today, sophisticated software packages like Adobe Photoshop
and GIMP include a variety of features that enable users to copy,
paste, compose, morph and otherwise manipulate their images. Un-
fortunately, while existing digital tools make it easier than ever to
create high quality static images, making drawings come “alive”
through movement and interactive behaviors in cartoons, videos, or
games is a very different and challenging task.

Turning a drawing into a dynamic, interactive entity typically in-
volves several steps that require different types of expertise: a rig-
ger defines articulation variables; an animator creates keyframes
that specify how those variables change over time; and a program-
mer encodes the keyframed motions into behaviors. In some cases,
simulation can provide a more automated alternative for generating
motions and behaviors, but it often requires significant amounts of
tuning to produce results that exhibit specific, desired characteris-
tics. For professional film and game production, these steps can
be distributed to separate teams of artists, riggers, animators and
programmers, which makes for a highly modular content creation
pipeline. However, for more casual users, the gap in required skills
and expertise between creating a drawing and making it come to
life represents a significant barrier. This is one likely reason why it
is much easier to find examples of high quality static drawings (e.g.,
in online image repositories) than compelling dynamic content.

Sprite sheets, collections of static 2D drawings that depict repre-
sentative poses for an object (Figure 2), offer a more cohesive,
drawing-centric approach to creating dynamic images. Producing
motion with a sprite sheet involves cycling through drawings of the
object. Thus, artists can change both the appearance and dynamic
behavior of an object using traditional drawing tools by creating

Figure 2: Traditional sprite sheets capture all the poses a charac-
ter or object can assume in a game. (Example from “Age of Um-
pires”; http://hockey.spacebar.org/. Copyright Tom Murphy VII,
used with permission.)

or editing various poses. Unfortunately, sprite sheets require many
drawings to produce smooth animations since even small deforma-
tions to a pose require an entirely new drawing. Furthermore, even
if these in-between poses can be generated automatically, sprite
sheets alone encode neither the timing information that is critical
for producing high quality motions, nor the logic that defines how
an object should behave in response to external stimuli. As a result,
sprite sheets still require a significant amount of work to create and
use. In contrast, we use physics to automatically provide timing
and achieve generalization outside the hand-drawn examples.

In this work, we present an approach for transforming static draw-
ings into dynamic sprites. To produce a dynamic sprite, the artist
creates a pose manifold by drawing an object, deforming it into ex-
ample poses, and specifying sets of these example poses that can
be interpolated as the object moves. Our system uses example-
based physical simulation to automatically move the object through
this pose manifold based on forces applied from the external en-
vironment or user commands. In this way, we allow the artist to
create dynamic objects and characters without specifying many in-
between frames, adjusting animation curves, or writing code that
defines object behavior.

The key feature of our approach is that it provides a set of explicit
artistic controls over various characteristics of dynamic sprites.
First, the example poses themselves give artists significant control
over the appearance of the pose manifold.

However, combining several example poses at once can lead to a
“muddy” manifold where interesting features of the individual ex-
amples get lost in the blended pose. Thus, we allow the artist to ex-
plicitly construct a simplicial complex (mostly line segments with
the occasional triangle) over the set of example poses. Furthermore,
since external physical forces alone may not induce sufficient mo-
tion within the pose manifold, our method provides several addi-
tional knobs for controlling the manner in which objects transition
between the poses. For example, artists can tell the system to favor
particular poses for specific object states, such as a stretched out
pose when an object has high velocity, or a neutral pose that repre-
sents the object at equilibrium. The artist can also adjust how much
energy an object retains after interactions (e.g., the bounciness of
a ball sprite). Modifying these parameters allows artists to control
the look and feel of motions and behaviors in a more direct, intu-
itive manner than fine-tuning physical properties like the elasticity
or density of deformable objects.

We used our approach to generate a variety of sprites that ex-
hibit different types of dynamic behavior, including a cartoony
ball, bouncy characters, lively construction materials, and articu-
lated ragdolls. We also created three games that combine multiple
sprites into interactive environments. Our results demonstrate how
our approach facilitates the creation of dynamic objects from static
drawings and gives artists intuitive and powerful control over not
only the pose manifold, but also how the pose manifold is navi-
gated.

2 Related Work

Beginning with the pioneering work of Beier and Neely [1992],
object interpolation has delivered techniques for natural shape in-
terpolation [Alexa et al., 2000], and the development of interac-
tive systems that enable posing, bending, and stretching of images
and drawings [Igarashi et al., 2005]. While such techniques enable
interactive performance-based animation of a single drawing, our
work investigates a method that animates a collection of drawings
automatically.

Our approach addresses the need to produce non-realistic animation
of expressive and even exaggerated shapes. Ngo and colleagues
propose manual construction of a simplicial complex that can sup-
port animation of arbitrary drawing collections [2000]. Bregler and
colleagues use a similar geometric structure to retarget motions
from one cartoon to another [2002]. Our approach extends these
ideas with a simulation method that navigates configuration space
with proper timing and according to the interaction with the envi-
ronment.

This approach could also be combined with techniques for cam-
era animation [Horry et al., 1997; Oh et al., 2001]. In particular,
the proposal for a 2.5D cartoon model [Rivers et al., 2010] echoes
our desire to preserve stylization of hand-drawn vector art while
expanding its use with freer viewpoint manipulation. Our work
complements these efforts by addressing the animation due to the
internal motion of the object instead of the external camera motion.

Simulation has become an indispensable tool for the computer an-
imation of natural phenomena. In the context of elastically de-
formable bodies [Terzopoulos and Fleischer, 1988a; Terzopou-
los and Fleischer, 1988b], two general approaches have become
popular both in the literature and in practice: the finite element
method [O’Brien and Hodgins, 1999; Parker and O’Brien, 2009]
(and its co-rotational [Müller et al., 2002; Müller and Gross, 2004]
and invertible variants [Irving et al., 2004]) and position-based dy-
namics/shape matching [Müller et al., 2005; Rivers and James,
2007; Müller et al., 2007; Stam, 2009; Müller and Chentanez,
2011] (and the related strain limiting approaches [Thomaszewski
et al., 2009; Wang et al., 2010]).

Finite element methods have a rich history in applied mathemat-
ics and engineering with the nice property that finer discretizations
converge to a solution of some equations of motion. In contrast,
shape matching replaces second-order elastic forces with positional
constraints, which are satisfied by iteratively filtering particle posi-
tions, to deliver plausible, fast, and stable approximations. These
features make shape matching extremely popular in real-time and
interactive contexts such as video games. Moreover, shape match-
ing methods are more amenable to artistic control—a variety of
artistic goals can be expressed in terms of the filters that shape
matching repeatedly applies, whereas applying such filters in a fi-
nite element method would lead to complex non-linear effects and
likely instability. Because interactivity and artistic control are our
primary goals, the shape matching framework is a better choice for
our task.

Unlike keyframing, simulation easily coordinates many degrees-of-
freedom, produces natural timing and physically correct motion,
and generalizes to a wide variety of contexts and environments. Un-
fortunately, it is less capable of stylized cartoon animation [Barzel
et al., 1996], and it is more difficult to direct [Chenney and Forsyth,
2000; Popović et al., 2000; Bergou et al., 2007]. Faloutsos and
colleagues [1997] proposed simulating directly in an artist-defined
deformation subspace given by deformation modes on a lattice. Re-
cent works have extended this idea, using arbitrary mesh deforma-
tions to create example-based simulation: a more automated solu-

Figure 3: The rig used to generate poses of the cartoon ball. The
yellow dots are control handles.

tion to stylized animation [Martin et al., 2011; Schumacher et al.,
2012; Koyama et al., 2012]. We explore a similar framework, ex-
pand it to facilitate navigation on the pose manifold, and implement
it with a new formulation.

Although artistic control manipulates the timing just like locomo-
tion control or other control tasks, it requires a different set of
tools, controls, and solutions. Two recent works exemplify this di-
chotomy for simulation of elastic bodies [Coros et al., 2012; Hahn
et al., 2012]. Coros and colleagues [2012] use rest-shape adaptation
to locomote deformable creatures within FEM simulations. While
this approaches uses examples to parameterize the rest shape, it is
largely unconcerned about whether any example is recognizable
with an animation frame: the essential task is to move the center
of mass. In contrast, rig-space physics [2012] strives to introduce
physics into the animation pipeline. Hence, it follows the specified
animation curves precisely while inferring the missing degrees of
freedom with reduced-order FEM simulation. The aim of our work
is to introduce simulation to static drawings – not animations. As a
result, we design an approach that provides controls for manipulat-
ing the drawing and the timing model without requiring keyframing
or other animation skills. This timing model intentionally departs
from the FEM framework so that physically invalid but still plausi-
ble motions remain as an artistic option.

3 Method

Our approach proceeds in two phases: an authoring phase, in which
an artist designs a low-dimensional deformation rig (see Figure 3),
uses this rig to create example poses, and defines a simplicial com-
plex connecting these poses (see Figure 4); and a simulation phase,
where our system uses example-based simulation to create a dy-
namic, interactive animation (see Figure 5). We note that though
the details of our example-based simulation differ from previous
work, our primary technical contribution is in how we provide ex-
plicit artistic control over the pose manifold and how it is navigated.

3.1 Authoring Phase

As the first step to creating stylized interactive animations, the artist
specifies a low degree of freedom rig using the method of Jacobson
and colleagues [2012]. Specifically, the artist places a small num-
ber (5-10) of bones and/or pins on the input shape. By manipulat-

Figure 4: The example poses and the simplicial complex used to
create a stylized bouncing ball.

Figure 5: Three stylized behaviors generated by our system.

ing this simple rig the artist creates a set of example poses that will
guide the simulation. This rig also determines how the example
poses will be interpolated. The artist additionally defines a simpli-
cial complex over the example shapes that determines which shapes
may be blended. Then the artist loads the simplicial complex into
our example-based simulation and interactively tunes how the pose
manifold is navigated by choosing what optional filters to apply and
with what strengths.

3.2 Example-based Simulation

Our runtime environment builds on recent work that applies
example-based simulation to shape matching/position-based dy-
namics [Schumacher et al., 2012; Koyama et al., 2012]. De-
formable objects are modeled as a set of particles, pi ∈ P with
positions, xi, and velocities, vi. The neighborhood of a particle
N (pi) is the set of particles in the k-ring (typically, k = 3) of
pi in a precomputed triangulation of the particle set. At its most
basic level, our method applies a series of filters to the particle’s
positions and velocities to satisfy the goals of the artist. Our ap-
proach can also be cast in the prediction/correction framework: we

predict particle positions with a forward Euler integrator and then
correct them to achieve various goals; including pulling toward the
pose manifold, removing interpenetration, and artistic goals, such
as setting the global orientation. See Algorithm 1 for a summary of
the simulation timestep. We now describe these operations in more
detail.

Algorithm 1 Simulation Timestep

Apply body forces (e.g. gravity): v += f/m ∗ dt
Forward-euler position update: x += v ∗ dt
Compute desired rest shape
Interleave and Iterate

Local-neighborhood shape match
Global shape match
Resolve collisions

Compute velocity
Global momentum adjustment
Correct global orientation

3.2.1 Compute Desired Rest Shape

Our runtime environment takes as input the artist-authored pose
manifold described by a set of example poses, a low degree of free-
dom animation rig, a simplicial complex that describes which poses
can be blended, and any other rules (such as an equilibrium pose)
that guide navigation on the manifold. Then, during each simula-
tion step we must select a pose on this pose manifold that will be
used as a rest state for shape matching.

To interpolate poses within a simplex, we first factor each handle
transform into translational, scale/shear, and rotational components
using a polar decomposition. Translation and scale/shear terms are
interpolated linearly, while rotations are combined using spherical
linear interpolation. The final pose is generated by applying linear
blend skinning to the interpolated transforms. Specifically, to blend
two example poses with weights α and β we would have,

ei =

m∑
j=1

wj(ri) Slerp(αR1, βR2)(αS1 + βS2)ri + αt1 + βt2,

(1)
where ei is the particle’s position in the pose selected from the pose
manifold, ri is the particle’s position in the initial rest configuration
where the weights were computed,wj(·) gives the weight of the jth

handle at the specified position, and R, S, and t are the rotation,
scale/sheer, and translations computed by the polar decomposition.
Generalization to blending more poses is straightforward.

It remains to describe how we compute the weights (α and β above)
we will use to combine the example poses. The straightforward
solution is to simply project the current simulated shape onto the
pose manifold. When external forces deform an object toward an
example pose, this straightforward manifold projection generates
animations that smoothly and plausibly transition between the user
provided examples. However, projection alone is not adequate for
forces orthogonal to the pose manifold, or when other artistic con-
trol is desired. Thus, we have included additional control over how
the simulation navigates the pose manifold, resulting in richer be-
havior. The weights are computed by performing the following op-
erations:

1. Project current shape onto pose manifold
2. Attract toward equilibrium pose
3. Apply energy adjustment
4. Apply velocity-based adjustment

Note that the first two elements have been incorporated into pre-
vious example-based simulation approaches, while the last two are
critical to achieving our results.

Project current shape onto pose manifold The goal of this
step is to find interpolation weights in the simplicial complex, such
that the skinned shape matches the current shape as closely as pos-
sible. To account for rotations we additionally compute a global,
best-fit rotation. We alternate between solving for optimal weights
with this rotation held fixed, and solving for the optimal rotation
with weights held fixed. To compute optimal weights, we define
our cost function as ∑

i,j

||Rgeij − xij ||2 (2)

where i and j are connected particles, Rg is the current global ro-
tation, xij is the vector between particles i and j in world space,
and eij is the vector between i and j computed via linear blend
skinning with the current interpolation weights (see Equation (1)).
This projection yields barycentric coordinates, mp, in the simpli-
cial complex that defines the manifold.

As noted by Jacobson and colleagues [2012], positions of nearby
particles computed by linear blend skinning are highly correlated,
so we adopt their “rotation clusters” optimization. Instead of sum-
ming over all particles i and j, we compute a smaller set of rep-
resentative particles using k-means clustering and sum over them.
We use a simple Newton solver to optimize the objective, using au-
tomatic differentiation to compute the gradient and Hessian [Fike
and Alonso, 2011]. To compute the optimal global rotation, we use
the method of Sorkine and Alexa [2007].

Attract toward equilibrium pose As described thus far, our
example-based framework has no notion of a rest pose—all poses
in the pose manifold generate zero elastic energy. To address this
limitation, we allow the artist to specify an equilibrium pose, q, in
the example manifold and apply a spring force toward this equilib-
rium pose when computing the interpolation weights. In the spirit
of position based dynamics, we use a first-order spring:

meq = me + keq (q−me) , (3)

where meq is the pose after attracting to the equilibrium pose, keq is
a stiffness, me the barycentric coordinates after energy adjustment,
and q the barycentric coordinates of the equilibrium pose.

Apply energy adjustment Often, an artist will want the simula-
tion to closely match the pose manifold, requiring very high mate-
rial stiffness. In these cases, any energy from deformations orthog-
onal to the pose manifold is lost. To combat this, we apply some
of this lost energy in the pose manifold. Position-based dynamics
does not have a explicit notion of energy, however, a good proxy
for kinetic energy is

e =
∑
i∈P

mi(∆x)2, (4)

where mi is the mass of pi and ∆x is the change in a particle’s po-
sition. We compute this energy when particles interact with other
objects (e.g. during collisions). Our simulator then pushes the in-
terpolation weights by an amount proportional to this energy,

me = mp + kedee, (5)

where me is the pose after applying energy adjustment, mp is the
initial projection onto the manifold, ke is a stiffness, and de is the

direction of energy offset. This direction can be variably chosen as
the direction away from the equilibrium (mp −meq), the velocity
in the manifold, or an explicitly specified direction. To avoid un-
wanted oscillations, we ignore energy contributions below a user-
defined threshold.

The result is in-manifold deformation for shapes, even when experi-
encing orthogonal interactions, and a reduction of out-of-manifold
deformation. Transferring energy normal to the manifold to a tan-
gent direction may seem unphysical—it is. However, in practice
we have found that this approach does an excellent job of preserv-
ing the artist’s intent, expressed through the example shapes, as un-
physical as this intent may be.

Apply velocity-based adjustment In our framework it is
straightforward to use any information from the simulation state
to guide navigation of the manifold. For example, in order to add
cartoon-inspired stretch to a fast moving object, we attract interpo-
lation weights to a manifold vertex corresponding to the stretched
pose, a, with a strength proportional to the object’s speed, s.

mv = meq + kvs (a−meq) , (6)

where mv is the pose after applying velocity adjustment, meq is
the pose after being attracted to the equilibrium, kv is a stiffness,
and a is the pose being attracted to (e.g. the stretched pose).

3.2.2 Shape Matching

Once we compute the current rest pose of the object using lin-
ear blend skinning with appropriate interpolation weights, we are
ready to compute dynamics. While any elastic simulation method
could be used, we use shape matching [Müller et al., 2005] for
its efficiency and implementation simplicity. Furthermore, because
shape-matching models elasticity with simple first-order dynamics,
it fits in well with our framework of filtering of positions and veloc-
ities, allowing a greater degree of artistic control.

While the initial shape matching work [Müller et al., 2005] sup-
ported only global shape matching, more recently Rivers and
James [2007] introduced a hierarchical approach. We take a middle
ground and interleave global shape matching passes, which quickly
correct any out-of-manifold deformation, and passes over local
neighborhoods, which allow elastic deformations not described by
example poses. For completeness, we briefly describe the shape
matching approach. Given corresponding points in world space,
xi, and in our example pose, ei, we solve for a translations, tx and
te, and rotation, R, that minimize∑

i

mi (R(ei − te)− (xi − tx))2 . (7)

The translations correspond to the center of mass for each set of
particles and the rotation is found by a polar decomposition. We
can then compute goal positions, gi

gi = R (ei − te) + tx. (8)

We include all particles in the global shape matches. For the local-
neighborhood passes, we iterate over all the particles performing
the shape match using only the particles in the local neighborhood,
N (pi), that is,∑

j∈N (pi)

mj (R(ej − te)− (xj − tx))2 . (9)

We then compute a particle’s goal position by averaging over all
neighborhoods that contain it.

gi =

∑
j|i∈N (pj)

gij∑
j|i∈N (pj)

1
, (10)

where gij is pi’s goal position when shape matching usingN (pj).

Additionally, we allow the artist to decompose an image into dis-
joint layers. To propagate constraints between layers, we add an ad-
ditional constraint on a set of “pin” particles which join two layers.
At initialization, for each pin, we find the triangle on the connect-
ing layer that it is contained in. Then, we compute the barycentric
coordinates of the pin with respect to its containing triangle. To
enforce the constraint, we compute the world position of the stored
barycentric coordinates with the current triangle vertex positions,
and pull the pin particle toward it.

Collisions are handled by projecting overlapping particles out of
objects, using the underlying triangle mesh to detect and resolve
collisions.

3.2.3 Global Momentum Adjustment

Position-based dynamics has difficulty producing highly elastic,
“bouncy” collisions. The inclusion of squashed poses in the pose
manifold exacerbates this issue as they appear to be rest poses to
the shape matching. However, such collisions are essential to lively,
cartoon-style animation. To address this limitation, we add momen-
tum directly to the system after collisions with the ground. Specif-
ically, for each object we store the momentum we wish to add, p,
which is updated each timestep with a contribution from each col-
liding particle.

p← p +mikm (xpro − xpen) (11)

where mi is the particle mass, km is a scale, xpro is the particle’s
(projected) position after resolving the collision and xpen is the
penetrating particle position. Over time we add this momentum to
the system, for each particle,

vi ← vi +mirp/m
2
o, (12)

where vi is the particle’s velocity, mi its mass, r the rate at which
we add the momentum, and mo is the total mass of the object. Fi-
nally, we update p

p← (1− r)p (13)

This approach has two important features. First, by computing p
per object rather than per particle, we avoid spatial discontinuities.
Second, by adding momentum over time, we allow the collisions to
occur over a finite time period, allowing the object to deform while
it is on the ground, before jumping back into the air.

3.2.4 Orientation Correction

In addition to the shape control provided by example-based shape
matching, artists may desire control over other aspects of the ob-
ject’s motion. For example, an artist may want to keep a charac-
ter upright or aligned with its velocity. Providing such control is
straightforward in our framework and requires only applying an-
other filter to the set of particles. For the case of rotation control,
we apply a first order spring to the global orientation of the object
about its center of mass,

θa = θb + koc (θg − θb) , (14)

where θb and θa are the global orientation before and after ori-
entation control respectively, koc is a stiffness, and θg is the goal

orientation. This goal angle can be a particular value, a scripted
trajectory, or other user defined criteria, such as the current veloc-
ity direction. The ordering of filters is important. For example,
applying this filter before updating particle velocities leads to the
computed velocities having an unwanted ”spin” component.

4 Results

To illustrate our authoring process we consider the classic anima-
tion task of creating a bouncing ball with squash and stretch. Fig-
ure 3 shows the simple rig we use to create the example poses
in Figure 4. Figure 4 also visualizes the three line segments that
make up the example manifold, which allows interpolation between
the undeformed pose and either the squashed or stretched poses. In
this example, the undeformed pose is set as the equilibrium pose.
In addition, we use energy adjustment to move the selected exam-
ple toward the squashed pose, which is otherwise largely ignored.
Velocity-based adjustment pushes the selected example toward the
stretched pose when the ball is moving quickly, and global orien-
tation control aligns the pose with the velocity direction. Finally,
global momentum adjustment allows the ball to bounce, appearing
to “come alive” and move of its own volition. Figure 5 shows a va-
riety of behaviors that can be achieved by changing the parameters.

We have also incorporated dynamic sprites into several simple
games. In this context, the dynamic sprites enhance both visual
complexity as well as gameplay compared to static objects or pre-
vious example-based approaches.

In our first game, players attempt to navigate a character vertically
towards a finish line by jumping on a sequence of platforms. The
player can control the rest pose of the character and apply left and
right forces while in the air. With dynamic sprites, it is easy to
create a variety of platform types (shown in Figure 7) that look
and behave differently based on the underlying examples and set-
tings for the artistic controls. For example, the brick platforms are
mainly rigid and provide little vertical boost after impact, while the
I-beams bend elastically when the player lands. The rope platforms
are softer than the I-beams and do not spring back to their original
shape as quickly.

In the second game, players position I-beams, catapults and other
objects to direct a passive object (e.g., a bouncy ball) that is dropped
from above towards a target. Our dynamic sprites can be used to an-
imate a variety of game objects ranging from sturdy brick obstacles,
to an energetic catapult and launching pad. A sample level is shown
in Figure 8.

In our third game, ragdoll figures are fired from a cannon toward a
target while various boxes and I-beams serve as obstacles (see Fig-
ure 6). We represent all game elements as dynamic sprites with
different behaviors: the cannon contracts on firing; the character
is drawn to an elongated, “superman” pose when moving quickly
but assumes a fetal position upon impact; the I-beams wiggle elas-
tically due to bent example poses; and energy adjustment draws the
boxes to a variety of poses that are largely orthogonal to the external
forces. As can be seen in the figure and accompanying video our
dynamic sprites generate richer deformations than shape matching
or standard example-based physics, where the red poses are not ac-
tivated. Unless a large number of particles are perturbed toward an
example pose, the manifold projection does not move the current
rest pose significantly through the manifold; the bulk of the mate-
rial, which is undeformed, has lowest cost for the current rest pose,
especially for the stiff materials we desire. The “rotation cluster”
approximation we use for efficiency exacerbates this, since only the
representative particles are considered during our manifold projec-
tion step. However, even when considering all particles during the

Figure 7: These dynamic sprites platforms cover a broad range of
behaviors.

Figure 8: The user places the catapult and springy platform to help
the ball reach the goal.

projection step, it is difficult to trigger example poses through local
collisions when using stiff materials.

Our results exhibit many behaviors that might be considered arti-
facts in other physics based approaches. However, many of these
are both desirable, and easily controllable by an artist. For exam-
ple, the ”jiggliness” and excitability of the I-Beams in the cannon
game are easily adjustable from passive and stiff, to energetic and
oscillatory, as seen in the accompanying video. In the same way
that cartoon drawings don’t accurately reflect their real world in-
spiration, our physics-inspired (nonphysical) behavior is a stylized
exaggeration of real world motion.

Our method does exhibit some behaviors that we consider to be ar-
tifacts. Some of the blended poses seem unnatural or undesirable.
This can be alleviated to some extent by including more in-between
poses in the manifold. Contact handling sometimes introduces os-
cillations near collisions, especially during resting contact. Finally,
the global rotations, applied by our orientation control can be visu-
ally jarring. A first-order spring based control method may not be
adequate to achieve smooth, subtle rotation control.

5 Conclusion

Our current system allows artists to turn sketches of example poses
into dynamic, physical, reactive objects. We see several promising
directions for future work. In our current pipeline, objects are posed
using a warping system. This is not a requirement of the method;
adding support for automatic registration (e.g. [Sýkora et al., 2009])
would allow us to use traditional sprite sheets as input. While we

Figure 6: From left to right: Shape matching only, shape matching with examples, 3 different dynamic sprites.

Platform Puzzle Launcher
Game Game Game

Neighborhood Shape Match 3.3 2.2 6.0
Global Shape Matching 0.3 0.1 0.1
Manifold Projection 5.0 8.9 2.0
Collisions 0.7 13.2 0.3
Other 1.2 1.0 0.5

Table 1: Timing results for selected examples (ms per 60Hz frame).

believe that our parameters are intuitive, it might still be interest-
ing to investigate automatic tuning – e.g. changing momentum-
preservation based on an artist-sketched bounce. Similarly, it may
be difficult for users of our system to understand if a behavior they
are seeing results from badly-tuned parameters or the need for more
example poses; this is also a question that we may be able to answer
algorithmically. Because we focus on sketched input, our technique
works only in 2D; however, we believe that the pose manifold con-
cept and the control methods we propose should generalize to 3D.
Finally, our current prototype is not well-suited to the animation of
locomotion—an area where traditional sprite sheets excel. Incor-
porating active control strategies such as those described by [Coros
et al., 2012] may be a promising research direction.

Overall, we find that our system sits at an interesting point in the
design space of methods for creating dynamic content. By directly
connecting artist-created poses with physical properties, dynamic
sprites enable artists to create more interesting and detailed physics-
based characters and objects with less effort than either traditional
sprite sheets (which sacrifice physical realism) or rigging and ani-
mation systems (which require several different areas of expertise).

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-
as-possible shape interpolation. In Proceedings of ACM SIG-
GRAPH, 157–164.

BARZEL, R., HUGHES, J. F., AND WOOD, D. N. 1996. Plausible

motion simulation for computer graphics animation. In Com-
puter Animation and Simulation ’96, Proceedings of the Euro-
graphics Workshop, 184–197.

BEIER, T., AND NEELY, S. 1992. Feature-based image metamor-
phosis. In ACM SIGGRAPH Computer Graphics, vol. 26, ACM,
35–42.

BERGOU, M., MATHUR, S., WARDETZKY, M., AND GRINSPUN,
E. 2007. TRACKS: Toward directable thin shells. ACM Trans.
Graph. 26, 3 (July), 50:1–50:10.

BREGLER, C., LOEB, L., CHUANG, E., AND DESHPANDE, H.
2002. Turning to the masters: Motion capturing cartoons. ACM
Trans. Graph. 21, 3 (July), 399–407.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling plausible
solutions to multi-body constraint problems. In Proceedings of
ACM SIGGRAPH, 219–228.

COROS, S., MARTIN, S., THOMASZEWSKI, B., SCHUMACHER,
C., SUMNER, R., AND GROSS, M. 2012. Deformable objects
alive! ACM Trans. Graph. 31, 4, 69:1–69:9.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
1997. Dynamic free-form deformations for animation synthesis.
Visualization and Computer Graphics, IEEE Transactions on 3,
3, 201–214.

FIKE, J., AND ALONSO, J. 2011. The development of hyper-dual
numbers for exact second-derivative calculations. AIAA paper
886.

HAHN, F., MARTIN, S., THOMASZEWSKI, B., SUMNER, R.,
COROS, S., AND GROSS, M. 2012. Rig-space physics. ACM
Trans. Graph. 31, 4, 72:1–72:8.

HORRY, Y., ICHI ANJYO, K., AND ARAI, K. 1997. Tour into the
picture: Using a spidery mesh interface to make animation from
a single image. In Proceedings of ACM SIGGRAPH, 225–232.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3
(Aug.), 1134–1141.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible fi-
nite elements for robust simulation of large deformation. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 131–140.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND
SORKINE, O. 2012. Fast automatic skinning transformations.
ACM Trans. Graph. 31, 4 (July), 77:1–77:10.

KOYAMA, Y., TAKAYAMA, K., UMETANI, N., AND IGARASHI,
T. 2012. Real-time example-based elastic deformation. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’12, 19–24.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. ACM Trans. Graph.
30, 4 (July), 72:1–72:8.

MÜLLER, M., AND CHENTANEZ, N. 2011. Solid simulation with
oriented particles. ACM Trans. Graph. 30, 4 (July), 92:1–92:10.

MÜLLER, M., AND GROSS, M. 2004. Interactive virtual materials.
In The Proccedings of Graphics Interface, 239–246.

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND
CUTLER, B. 2002. Stable real-time deformations. In The Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 49–54.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. Graph. 24, 3 (July), 471–478.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2, 109–118.

NGO, T., CUTRELL, D., DANA, J., DONALD, B., LOEB, L., AND
ZHU, S. 2000. Accessible animation and customizable graphics
via simplicial configuration modeling. In Proceedings of ACM
SIGGRAPH, 403–410.

O’BRIEN, J. F., AND HODGINS, J. K. 1999. Graphical model-
ing and animation of brittle fracture. In Proceedings of ACM
SIGGRAPH, 111–120.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001.
Image-based modeling and photo editing. In Proceedings of
ACM SIGGRAPH, 433–442.

PARKER, E. G., AND O’BRIEN, J. F. 2009. Real-time deformation
and fracture in a game environment. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
156–166.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body simu-
lations. In Proceedings of ACM SIGGRAPH, 209–218.

RIVERS, A. R., AND JAMES, D. L. 2007. Fastlsm: fast lattice
shape matching for robust real-time deformation. ACM Trans.
Graph. 26, 3 (July).

RIVERS, A., IGARASHI, T., AND DURAND, F. 2010. 2.5d cartoon
models. ACM Trans. Graph. 29, 4 (July), 59:1–59:7.

SCHUMACHER, C., THOMASZEWSKI, B., COROS, S., MARTIN,
S., SUMNER, R., AND GROSS, M. 2012. Efficient simula-
tion of example-based materials. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
1–8.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proceedings of the fifth Eurographics sympo-
sium on Geometry processing, 109–116.

STAM, J. 2009. Nucleus: Towards a unified dynamics solver for
computer graphics. In CAD/Graphics, 1–11.

SÝKORA, D., DINGLIANA, J., AND COLLINS, S. 2009. As-
rigid-as-possible image registration for hand-drawn cartoon an-
imations. In Proceedings of International Symposium on Non-
photorealistic Animation and Rendering, 25–33.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Deformable mod-
els. Visual Computer 4, 6, 306–331.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Modeling inelas-
tic deformation: Viscoelasticity, plasticity, fracture. In Proceed-
ings of ACM SIGGRAPH, 269–278.

THOMASZEWSKI, B., PABST, S., AND STRASSER, W. 2009.
Continuum-based strain limiting. Comput. Graph. Forum 28,
2, 569–576.

WANG, H., O’BRIEN, J., AND RAMAMOORTHI, R. 2010. Multi-
resolution isotropic strain limiting. ACM Trans. Graph. 29, 6,
156:1–156:10.

