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Figure 1: A set of fearless stuntmen are fired out of a cannon. The dynamic sprites interact to create a rich, stylized
animation.

Abstract

Traditional methods for creating dynamic objects and
characters from static drawings involve careful tweaking
of animation curves and/or simulation parameters. Sprite
sheets offer a more drawing-centric solution, but they do
not encode timing information or the logic that determines
how objects should transition between poses and cannot
generalize outside the given drawings. We present an ap-
proach for creating dynamic sprites that leverages sprite
sheets while addressing these limitations. In our system,
artists create a drawing, deform it to specify a small num-
ber of example poses, and indicate which poses can be
interpolated. To make the object move, we design a pro-
cedural simulation to navigate the pose manifold in re-
sponse to external or user-controlled forces. Powerful
artistic control is achieved by allowing the artist to spec-
ify both the pose manifold and how it is navigated, while
physics is leveraged to provide timing and generality. We
used our method to create sprites with a range of different
dynamic properties.

CR Categories: I.3.4 [Computer Graphics]: Graphics
Utilities—Graphics Editors

Keywords: physics-based animation

Introduction

Drawing pictures is one of the oldest and most fundamen-
tal forms of human communication. Ever since our an-
cestors began creating cave paintings in prehistoric times,
humans have been making pictures to tell stories, explain
ideas and express emotions. Over the years, technical
advances have provided artists with an ever expanding
arsenal of tools and techniques for creating and editing
images, and today, sophisticated software packages like
Adobe Photoshop and GIMP include a variety of features
that enable users to copy, paste, compose, morph and
otherwise manipulate their images. Unfortunately, while
existing digital tools make it easier than ever to create
high quality static images, making drawings come “alive”
through movement and interactive behaviors in cartoons,
videos, or games is a very different and challenging task.

Turning a drawing into a dynamic, interactive entity typ-
ically involves several steps that require different types
of expertise: a rigger defines articulation variables; an
animator creates keyframes that specify how those vari-
ables change over time; and a programmer encodes the
keyframed motions into behaviors. In some cases, simu-
lation can provide a more automated alternative for gen-
erating motions and behaviors, but it often requires sig-
nificant amounts of tuning to produce results that exhibit
specific, desired characteristics. For professional film and
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game production, these steps can be distributed to sep-
arate teams of artists, riggers, animators and program-
mers, which makes for a highly modular content creation
pipeline. However, for more casual users, the gap in re-
quired skills and expertise between creating a drawing and
making it come to life represents a significant barrier. This
is one likely reason why it is much easier to find exam-
ples of high quality static drawings (e.g., in online image
repositories) than compelling dynamic content.

Figure 2: Traditional sprite sheets capture all the poses
a character or object can assume in a game. (Exam-
ple from “Age of Umpires”; http://hockey.spacebar.org/.
Copyright Tom Murphy VII, used with permission.)

Sprite sheets, collections of static 2D drawings that depict
representative poses for an object (Figure 2), offer a more
cohesive, drawing-centric approach to creating dynamic
images. Producing motion with a sprite sheet involves cy-
cling through drawings of the object. Thus, artists can
change both the appearance and dynamic behavior of an
object using traditional drawing tools by creating or edit-
ing various poses. Unfortunately, sprite sheets require
many drawings to produce smooth animations since even
small deformations to a pose require an entirely new draw-
ing. Furthermore, even if these in-between poses can be
generated automatically, sprite sheets alone encode nei-
ther the timing information that is critical for producing
high quality motions, nor the logic that defines how an
object should behave in response to external stimuli. As
a result, sprite sheets still require a significant amount of
work to create and use. In contrast, we use physics to
automatically provide timing and achieve generalization
outside the hand-drawn examples.

In this work, we present an approach for transforming
static drawings into dynamic sprites. To produce a dy-
namic sprite, the artist creates a pose manifold by drawing
an object, deforming it into example poses, and specify-
ing sets of these example poses that can be interpolated as
the object moves. Our system uses example-based phys-
ical simulation to automatically move the object through
this pose manifold based on forces applied from the exter-
nal environment or user commands. In this way, we allow
the artist to create dynamic objects and characters without
specifying many in-between frames, adjusting animation
curves, or writing code that defines object behavior.

The key feature of our approach is that it provides a set
of explicit artistic controls over various characteristics of
dynamic sprites. First, the example poses themselves give
artists significant control over the appearance of the pose
manifold.

However, combining several example poses at once can
lead to a “muddy” manifold where interesting features of
the individual examples get lost in the blended pose. Thus,
we allow the artist to explicitly construct a simplicial com-
plex (mostly line segments with the occasional triangle)
over the set of example poses. Furthermore, since exter-
nal physical forces alone may not induce sufficient motion
within the pose manifold, our method provides several ad-
ditional knobs for controlling the manner in which objects
transition between the poses. For example, artists can
tell the system to favor particular poses for specific ob-
ject states, such as a stretched out pose when an object has
high velocity, or a neutral pose that represents the object at
equilibrium. The artist can also adjust how much energy
an object retains after interactions (e.g., the bounciness of
a ball sprite). Modifying these parameters allows artists
to control the look and feel of motions and behaviors in
a more direct, intuitive manner than fine-tuning physical
properties like the elasticity or density of deformable ob-
jects.

For more complicated behaviors, arbitrary controllers can
be used to traverse the pose manifold. Compared to con-
trollers used in traditional physics-based character ani-
mation, our controllers are simpler because the sprites
themselves can maintain important features of the motion,
such as balance, and otherwise “bend” the laws of physics
when desired.

We used our approach to generate a variety of sprites that
exhibit different types of dynamic behavior, including a
cartoony ball, bouncy characters, lively construction ma-
terials, and articulated ragdolls, either passively animated
or controlled by a finite state machine. We also created
three games that combine multiple sprites into interac-
tive environments. Our results demonstrate how our ap-
proach facilitates the creation of dynamic objects from
static drawings and gives artists intuitive and powerful
control over not only the pose manifold, but also how the
pose manifold is navigated.

Related Work

Our dynamic sprites apply and extend ideas from the
fields of shape interpolation, physics based animation, and
character animation

Shape Interpolation Beginning with the pioneering
work of Beier and Neely,1 object interpolation has de-
livered techniques for natural shape interpolation,2 and
the development of interactive systems that enable pos-
ing, bending, and stretching of images and drawings.3

While such techniques enable interactive performance-
based animation of a single drawing, our work investi-
gates a method that animates a collection of drawings au-
tomatically.

Our approach addresses the need to produce non-realistic
animation of expressive and even exaggerated shapes.
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Ngo and colleagues propose manual construction of a
simplicial complex that can support animation of arbitrary
drawing collections.4 Bregler and colleagues use a simi-
lar geometric structure to retarget motions from one car-
toon to another.5 Our approach extends these ideas with a
simulation method that navigates configuration space with
proper timing and according to the interaction with the en-
vironment.

This approach could also be combined with techniques for
camera animation.6, 7 In particular, the proposal for a 2.5D
cartoon model8 echoes our desire to preserve stylization of
hand-drawn vector art while expanding its use with freer
viewpoint manipulation. Our work complements these ef-
forts by addressing the animation due to the internal mo-
tion of the object instead of the external camera motion.

Physics Based Animation Simulation has become an
indispensable tool for the computer animation of natu-
ral phenomena. In the context of elastically deformable
bodies,9, 10 two general approaches have become popular
both in the literature and in practice: the finite element
method11, 12 (and its co-rotational13, 14 and invertible vari-
ants15) and position-based dynamics/shape matching16–20

(and the related strain limiting approaches21, 22).

Finite element methods have a rich history in applied
mathematics and engineering with the nice property that
finer discretizations converge to a solution of some equa-
tions of motion. In contrast, shape matching replaces
second-order elastic forces with positional constraints,
which are satisfied by iteratively filtering particle posi-
tions, to deliver plausible, fast, and stable approximations.
These features make shape matching extremely popular
in real-time and interactive contexts such as video games.
Moreover, shape matching methods are more amenable
to artistic control—a variety of artistic goals can be ex-
pressed in terms of the filters that shape matching repeat-
edly applies, whereas applying such filters in a finite el-
ement method would lead to complex non-linear effects
and likely instability. Because interactivity and artistic
control are our primary goals, the shape matching frame-
work is a better choice for our task.

Unlike keyframing, simulation easily coordinates many
degrees-of-freedom, produces natural timing and physi-
cally correct motion, and generalizes to a wide variety of
contexts and environments. Unfortunately, it is less ca-
pable of stylized cartoon animation,23 and it is more dif-
ficult to direct.24–26 Faloutsos and colleagues27 proposed
simulating directly in an artist-defined deformation sub-
space given by deformation modes on a lattice. Recent
works have extended this idea, using arbitrary mesh de-
formations to create example-based simulation: a more
automated solution to stylized animation.28–30 We explore
a similar framework, expand it to facilitate navigation on
the pose manifold, and implement it with a new formula-
tion.

Character Animation Interaction with other animated
characters is a critical requirement for creating immersive
virtual worlds. Existing approaches for animating char-
acters can be roughly grouped into two categories: kine-
matic or dynamic. Kinematic methods ignore physics and
animate the character’s pose directly, typically using ex-
isting motion data (eg. motion capture or artist animated
motions). In order to react to user commands or other
stimuli at runtime, these methods replay31–34 or interpo-
late35 between motions in a database. By leveraging exist-
ing motions, timing is handled implicitly and these meth-
ods excel at generating very natural motion. However,
these approaches have difficulty generalizing to new in-
teractions or environments.36

On the other hand, dynamically simulated characters can
react to arbitrary stimuli, but require complex control
strategies to achieve natural motion. Motion control has
long been studied in robotics. However, in robotics the
question of naturalness is often ignored. Almost 20
years ago, Hodgins and colleagues37 used control starte-
gies from robotics, including proportional-derivative con-
trollers and finite state machines to animate physically
simulated human athletes. More recently, more com-
plex control strategies have been introduced to improve
the naturalness of the motion. For example, by comb-
ing pose tracking with balance feedback controls, stable
characters who respond naturally to stimuli can be cre-
ated.38–40 However, most characters are naturally unstable
and under-actuated, requiring careful control of contact
forces even to maintain balance. Performing agile actions,
and remaining upright in the face of large disturbances
remains challenging. Authoring such controllers is also
difficult, requiring tradeoffs between overly-stiff control,
deviation from desired motions, and robustness.

Controlling dynamic sprites leverages the advantages of
both approaches by incorporating the positional and tra-
jectory data, defined by paths through the pose mani-
fold, with the dynamic response and interaction of physics
based animation.

Although artistic control manipulates the timing just like
locomotion control or other control tasks, it requires a
different set of tools, controls, and solutions. Two re-
cent works exemplify this dichotomy for simulation of
elastic bodies.41, 42 Coros and colleagues41 use rest-shape
adaptation to locomote deformable creatures within FEM
simulations. While this approaches uses examples to pa-
rameterize the rest shape, it is largely unconcerned about
whether any example is recognizable with an animation
frame: the essential task is to move the center of mass. In
contrast, rig-space physics42 strives to introduce physics
into the animation pipeline. Hence, it follows the speci-
fied animation curves precisely while inferring the miss-
ing degrees of freedom with reduced-order FEM simula-
tion. The aim of our work is to introduce simulation to
static drawings – not animations. As a result, we design
an approach that provides controls for manipulating the
drawing and the timing model without requiring keyfram-
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Figure 3: The rig used to generate poses of the cartoon
ball. The yellow dots are control handles.

Figure 4: The example poses and the simplicial complex
used to create a stylized bouncing ball.

ing or other animation skills. This timing model intention-
ally departs from the FEM framework so that physically
invalid but still plausible motions remain as an artistic op-
tion.

Method

Our approach proceeds in two phases: an authoring phase,
in which an artist designs a low-dimensional deformation
rig (see Figure 3), uses this rig to create example poses,
and defines a simplicial complex connecting these poses
(see Figure 4); and a simulation phase, where our system
uses example-based simulation to create a dynamic, inter-
active animation (see Figure 5). We note that though the
details of our example-based simulation differ from pre-
vious work, our primary technical contribution is in how
we provide explicit artistic control over the pose manifold
and how it is navigated.

Figure 5: Three stylized behaviors generated by our sys-
tem.

Authoring Phase

As the first step to creating stylized interactive animations,
the artist specifies a low degree of freedom rig using the
method of Jacobson and colleagues.43 Specifically, the
artist places a small number (5-10) of bones and/or pins
on the input shape. By manipulating this simple rig the
artist creates a set of example poses that will guide the
simulation. This rig also determines how the example
poses will be interpolated. The artist additionally defines
a simplicial complex over the example shapes that deter-
mines which shapes may be blended. Then the artist loads
the simplicial complex into our example-based simulation
and interactively tunes how the pose manifold is navigated
by choosing what optional filters to apply and with what
strengths.

Example-based Simulation

Our runtime environment builds on recent work
that applies example-based simulation to shape
matching/position-based dynamics.29, 30 Deformable
objects are modeled as a set of particles, pi ∈ P with
positions, xi, and velocities, vi. The neighborhood of a
particle N (pi) is the set of particles in the k-ring (typi-
cally, k = 3) of pi in a precomputed triangulation of the
particle set. At its most basic level, our method applies a
series of filters to the particle’s positions and velocities to
satisfy the goals of the artist. Our approach can also be
cast in the prediction/correction framework: we predict
particle positions with a forward Euler integrator and then
correct them to achieve various goals; including pulling
toward the pose manifold, removing interpenetration, and
artistic goals, such as setting the global orientation. See
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Algorithm 1 for a summary of the simulation timestep.
We now describe these operations in more detail.

Algorithm 1 Simulation Timestep

Apply body forces (e.g. gravity): v += f/m ∗ dt
Forward-euler position update: x += v ∗ dt
Compute desired rest shape
Interleave and Iterate

Local-neighborhood shape match
Global shape match
Resolve collisions

Compute velocity
Global momentum adjustment
Correct global orientation

Compute Desired Rest Shape

Our runtime environment takes as input the artist-authored
pose manifold described by a set of example poses, a low
degree of freedom animation rig, a simplicial complex
that describes which poses can be blended, and any other
rules (such as an equilibrium pose) that guide navigation
on the manifold. Then, during each simulation step we
must select a pose on this pose manifold that will be used
as a rest state for shape matching.

To interpolate poses within a simplex, we first factor each
handle transform into translational, scale/shear, and rota-
tional components using a polar decomposition. Transla-
tion and scale/shear terms are interpolated linearly, while
rotations are combined using spherical linear interpola-
tion. The final pose is generated by applying linear blend
skinning to the interpolated transforms. Specifically, to
blend two example poses with weights α and β we would
have,

ei =
∑m

j=1 wj(ri) Slerp(αR1, βR2)(αS1 + βS2)ri

+αt1 + βt2, (1)

where ei is the particle’s position in the pose selected
from the pose manifold, ri is the particle’s position in
the initial rest configuration where the weights were com-
puted,wj(·) gives the weight of the jth handle at the spec-
ified position, and R, S, and t are the rotation, scale/sheer,
and translations computed by the polar decomposition.
Generalization to blending more poses is straightforward.

It remains to describe how we compute the weights (α
and β above) we will use to combine the example poses.
The straightforward solution is to simply project the cur-
rent simulated shape onto the pose manifold. When exter-
nal forces deform an object toward an example pose, this
straightforward manifold projection generates animations
that smoothly and plausibly transition between the user
provided examples. However, projection alone is not ade-
quate for forces orthogonal to the pose manifold, or when
other artistic control is desired. Thus, we have included

additional control over how the simulation navigates the
pose manifold, resulting in richer behavior. The weights
are computed by performing the following operations:

1. Project current shape onto pose manifold
2. Adjust the equilibrium pose
3. Attract toward equilibrium pose
4. Apply energy adjustment
5. Apply velocity-based adjustment

Note that the first two elements have been incorpo-
rated into previous example-based simulation approaches,
while the last two are critical to achieving our results.

Project current shape onto pose manifold The goal
of this step is to find interpolation weights in the simplicial
complex, such that the skinned shape matches the current
shape as closely as possible. To account for rotations we
additionally compute a global, best-fit rotation. We alter-
nate between solving for optimal weights with this rota-
tion held fixed, and solving for the optimal rotation with
weights held fixed. To compute optimal weights, we de-
fine our cost function as∑

i,j

||Rgeij − xij ||2 (2)

where i and j are connected particles, Rg is the current
global rotation, xij is the vector between particles i and j
in world space, and eij is the vector between i and j com-
puted via linear blend skinning with the current interpo-
lation weights (see Equation (1)). This projection yields
barycentric coordinates, mp, in the simplicial complex
that defines the manifold.

As noted by Jacobson and colleagues,43 positions of
nearby particles computed by linear blend skinning are
highly correlated, so we adopt their “rotation clusters” op-
timization. Instead of summing over all particles i and j,
we compute a smaller set of representative particles using
k-means clustering and sum over them. We use a simple
Newton solver to optimize the objective, using automatic
differentiation to compute the gradient and Hessian.44 To
compute the optimal global rotation, we use the method
of Sorkine and Alexa.45

Adjusting the equilibrium pose As described thus far,
our example-based framework has no notion of a rest
pose—all poses in the pose manifold generate zero elastic
energy. To address this limitation, we introduce the notion
of an equilibrium pose, q, in the example manifold. High
level planning and control strategies are incorporated into
our method by allowing artists explicit control over how
this equilibrium pose is chosen. In our prototype, com-
plex behaviors are implemented using a 2-level finite state
machine. The high level state machine switches between
character behaviors (walking, jumping, falling, etc), and
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is controlled by user input and dynamic properties of the
simulation, such as whether or not the character is stand-
ing on the ground. The lower-level state machine con-
trols individual behaviors by adjusting the location of the
equilibrium pose in the manifold, such as transitioning
through the poses in a walk cycle.

Attract toward equilibrium pose In the spirit of posi-
tion based dynamics, we use a first-order spring to attract
toward the equilibrium pose:

meq = me + keq (q−me) , (3)

where meq is the pose after attracting to the equilibrium
pose, keq is a stiffness, me the barycentric coordinates af-
ter energy adjustment, and q the barycentric coordinates
of the equilibrium pose. By adjusting the stiffness of the
manifold spring, the artist can control how closely the
specified trajectory is followed, and how the motion is
influenced by other other aspects of the simulation (e.g.
energy adjustment).

Apply energy adjustment Often, an artist will want the
simulation to closely match the pose manifold, requiring
very high material stiffness. In these cases, any energy
from deformations orthogonal to the pose manifold is lost.
To combat this, we apply some of this lost energy in the
pose manifold. Position-based dynamics does not have a
explicit notion of energy, however, a good proxy for ki-
netic energy is

e =
∑
i∈P

mi(∆x)2, (4)

where mi is the mass of pi and ∆x is the change in a
particle’s position. We compute this energy when parti-
cles interact with other objects (e.g. during collisions).
Our simulator then pushes the interpolation weights by an
amount proportional to this energy,

me = mp + kedee, (5)

where me is the pose after applying energy adjustment,
mp is the initial projection onto the manifold, ke is a stiff-
ness, and de is the direction of energy offset. This direc-
tion can be variably chosen as the direction away from
the equilibrium (mp−meq), the velocity in the manifold,
or an explicitly specified direction. To avoid unwanted
oscillations, we ignore energy contributions below a user-
defined threshold.

The result is in-manifold deformation for shapes, even
when experiencing orthogonal interactions, and a reduc-
tion of out-of-manifold deformation. Transferring energy
normal to the manifold to a tangent direction may seem
unphysical—it is. However, in practice we have found
that this approach does an excellent job of preserving the
artist’s intent, expressed through the example shapes, as
unphysical as this intent may be.

Apply velocity-based adjustment In our framework it
is straightforward to use any information from the simu-
lation state to guide navigation of the manifold. For ex-
ample, in order to add cartoon-inspired stretch to a fast
moving object, we attract interpolation weights to a man-
ifold vertex corresponding to the stretched pose, a, with a
strength proportional to the object’s speed, s.

mv = meq + kvs (a−meq) , (6)

where mv is the pose after applying velocity adjustment,
meq is the pose after being attracted to the equilibrium,
kv is a stiffness, and a is the pose being attracted to (e.g.
the stretched pose).

Shape Matching

Once we compute the current rest pose of the object us-
ing linear blend skinning with appropriate interpolation
weights, we are ready to compute dynamics. While any
elastic simulation method could be used, we use shape
matching16 for its efficiency and implementation simplic-
ity. Furthermore, because shape-matching models elastic-
ity with simple first-order dynamics, it fits in well with
our framework of filtering of positions and velocities, al-
lowing a greater degree of artistic control.

While the initial shape matching work16 supported only
global shape matching, more recently Rivers and James17

introduced a hierarchical approach. We take a mid-
dle ground and interleave global shape matching passes,
which quickly correct any out-of-manifold deformation,
and passes over local neighborhoods, which allow elas-
tic deformations not described by example poses. For
completeness, we briefly describe the shape matching ap-
proach. Given corresponding points in world space, xi,
and in our example pose, ei, we solve for a translations,
tx and te, and rotation, R, that minimize∑

i

mi (R(ei − te)− (xi − tx))2 . (7)

The translations correspond to the center of mass for each
set of particles and the rotation is found by a polar decom-
position. We can then compute goal positions, gi

gi = R (ei − te) + tx. (8)

We include all particles in the global shape matches. For
the local-neighborhood passes, we iterate over all the par-
ticles performing the shape match using only the particles
in the local neighborhood,N (pi), that is,∑

j∈N (pi)

mj (R(ej − te)− (xj − tx))2 . (9)

We then compute a particle’s goal position by averaging
over all neighborhoods that contain it.

gi =

∑
j|i∈N (pj)

gij∑
j|i∈N (pj)

1
, (10)
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where gij is pi’s goal position when shape matching using
N (pj).

Additionally, we allow the artist to decompose an image
into disjoint layers. To propagate constraints between lay-
ers, we add an additional constraint on a set of “pin” par-
ticles which join two layers. At initialization, for each
pin, we find the triangle on the connecting layer that it is
contained in. Then, we compute the barycentric coordi-
nates of the pin with respect to its containing triangle. To
enforce the constraint, we compute the world position of
the stored barycentric coordinates with the current trian-
gle vertex positions, and pull the pin particle toward it.

Collisions are handled by projecting overlapping particles
out of objects, using the underlying triangle mesh to detect
and resolve collisions.

Global Momentum Adjustment

Position-based dynamics has difficulty producing highly
elastic, “bouncy” collisions. The inclusion of squashed
poses in the pose manifold exacerbates this issue as they
appear to be rest poses to the shape matching. However,
such collisions are essential to lively, cartoon-style ani-
mation. To address this limitation, we add momentum
directly to the system after collisions with the ground.
Specifically, for each object we store the momentum we
wish to add, p, which is updated each timestep with a
contribution from each colliding particle.

p← p +mikm (xpro − xpen) (11)

where mi is the particle mass, km is a scale, xpro is the
particle’s (projected) position after resolving the collision
and xpen is the penetrating particle position. Over time
we add this momentum to the system, for each particle,

vi ← vi +mirp/m
2
o, (12)

where vi is the particle’s velocity, mi its mass, r the rate
at which we add the momentum, and mo is the total mass
of the object. Finally, we update p

p← (1− r)p (13)

This approach has two important features. First, by com-
puting p per object rather than per particle, we avoid spa-
tial discontinuities. Second, by adding momentum over
time, we allow the collisions to occur over a finite time
period, allowing the object to deform while it is on the
ground, before jumping back into the air.

Orientation Correction

In addition to the shape control provided by example-
based shape matching, artists may desire control over
other aspects of the object’s motion. For example, an artist
may want to keep a character upright or aligned with its
velocity. Providing such control is straightforward in our
framework and requires only applying another filter to the

set of particles. For the case of rotation control, we apply
a first order spring to the global orientation of the object
about its center of mass,

θa = θb + koc (θg − θb) , (14)

where θb and θa are the global orientation before and after
orientation control respectively, koc is a stiffness, and θg
is the goal orientation. This goal angle can be a particular
value, a scripted trajectory, or other user defined criteria,
such as the current velocity direction. The ordering of fil-
ters is important. For example, applying this filter before
updating particle velocities leads to the computed veloci-
ties having an unwanted ”spin” component.

Flipping Sprites

In most sprite-based applications, characters can turn
around simply by reflecting the sprite about a vertical axis.
Incorporating such a discontinuous change in our physics-
based simulator requires care to maintain plausible elastic
simulation. Since the velocity at the next timestep is com-
puted as

vn+1 =
pn+1 − pn

dt
(15)

after flipping the sprite, we adjust the previous positions,
pn so that velocities are not changed by flipping. Artisti-
cally, this gives a sense of weight to objects as they change
direction; physically, it preserves linear momentum.

Results

To illustrate our authoring process we consider the classic
animation task of creating a bouncing ball with squash and
stretch. Figure 3 shows the simple rig we use to create the
example poses in Figure 4. Figure 4 also visualizes the
three line segments that make up the example manifold,
which allows interpolation between the undeformed pose
and either the squashed or stretched poses. In this exam-
ple, the undeformed pose is set as the equilibrium pose. In
addition, we use energy adjustment to move the selected
example toward the squashed pose, which is otherwise
largely ignored. Velocity-based adjustment pushes the se-
lected example toward the stretched pose when the ball is
moving quickly, and global orientation control aligns the
pose with the velocity direction. Finally, global momen-
tum adjustment allows the ball to bounce, appearing to
“come alive” and move of its own volition. Figure 5 shows
a variety of behaviors that can be achieved by changing
the parameters.

We have also incorporated dynamic sprites into several
simple games. In this context, the dynamic sprites en-
hance both visual complexity as well as gameplay com-
pared to static objects or previous example-based ap-
proaches.
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Figure 6: From left to right: Shape matching only, shape matching with examples, 3 different dynamic sprites.

In our first game, players attempt to navigate a character
vertically towards a finish line by jumping on a sequence
of platforms. The player can control the rest pose of the
character and apply left and right forces while in the air.
With dynamic sprites, it is easy to create a variety of plat-
form types (shown in Figure 7) that look and behave dif-
ferently based on the underlying examples and settings for
the artistic controls. For example, the brick platforms are
mainly rigid and provide little vertical boost after impact,
while the I-beams bend elastically when the player lands.
The rope platforms are softer than the I-beams and do not
spring back to their original shape as quickly.

In the second game, players position I-beams, catapults
and other objects to direct a passive object (e.g., a bouncy
ball) that is dropped from above towards a target. Our dy-
namic sprites can be used to animate a variety of game
objects ranging from sturdy brick obstacles, to an ener-
getic catapult and launching pad. A sample level is shown
in Figure 8.

In our third game, ragdoll figures are fired from a cannon
toward a target while various boxes and I-beams serve as
obstacles (see Figure 6). We represent all game elements
as dynamic sprites with different behaviors: the cannon
contracts on firing; the character is drawn to an elongated,
“superman” pose when moving quickly but assumes a fe-
tal position upon impact; the I-beams wiggle elastically
due to bent example poses; and energy adjustment draws
the boxes to a variety of poses that are largely orthogonal
to the external forces. As can be seen in the figure and
accompanying video our dynamic sprites generate richer
deformations than shape matching or standard example-
based physics, where the red poses are not activated. Un-
less a large number of particles are perturbed toward an
example pose, the manifold projection does not move the

current rest pose significantly through the manifold; the
bulk of the material, which is undeformed, has lowest cost
for the current rest pose, especially for the stiff materials
we desire. The “rotation cluster” approximation we use
for efficiency exacerbates this, since only the representa-
tive particles are considered during our manifold projec-
tion step. However, even when considering all particles
during the projection step, it is difficult to trigger example
poses through local collisions when using stiff materials.

In the final game, our ragdoll character is now actively
controlled using a 2-level finite state machine (see Fig-
ures 9 and 10). The walking behavior state machine
moves the equilibrium pose through 6 keyframe poses on
a manifold with a loop topology. Unlike in traditional
physics-based controllers, we did not need to consider bal-
ance and robustness of the character’s locomotion; global
orientation control keeps the character upright.

When the user wants to jump, first the character must
crouch to prepare, and then can spring upward into a
standing pose, similarly to the snake character in the plat-
former game. The character’s inflatable jacket can also be
used to shoot him further up in the air, and allow him to
float down slowly. The floating behavior slowly blends
from the inflated pose to the neutral pose. The position in
the pose manifold also determines the magnitude of a drag
force on the man as he slowly floats to the ground. Fig-
ure 11 shows the ragdoll using a bouncy I-beam to help
him float across a dangerous ball pit.

Our results exhibit many behaviors that might be consid-
ered artifacts in other physics based approaches. How-
ever, many of these are both desirable, and easily con-
trollable by an artist. For example, the ”jiggliness” and
excitability of the I-Beams in the cannon game are easily
adjustable from passive and stiff, to energetic and oscil-

8
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Figure 7: These dynamic sprites platforms cover a broad
range of behaviors.

Figure 8: The user places the catapult and springy plat-
form to help the ball reach the goal.

latory, as seen in the accompanying video. In the same
way that cartoon drawings don’t accurately reflect their
real world inspiration, our physics-inspired (nonphysical)
behavior is a stylized exaggeration of real world motion.

Our method does exhibit some behaviors that we consider
to be artifacts. Some of the blended poses seem unnat-
ural or undesirable. This can be alleviated to some ex-
tent by including more in-between poses in the manifold.
Contact handling sometimes introduces oscillations near
collisions, especially during resting contact. Finally, the
global rotations, applied by our orientation control can be
visually jarring. A first-order spring based control method
may not be adequate to achieve smooth, subtle rotation
control.

Conclusion

Our current system allows artists to turn sketches of ex-
ample poses into dynamic, physical, reactive objects and
actively controlled characters. We see several promising
directions for future work. In our current pipeline, objects
are posed using a warping system. This is not a require-
ment of the method; adding support for automatic reg-
istration (e.g.46) would allow us to use traditional sprite
sheets as input. While we believe that our parameters

Figure 9: With 3 example poses and their reflections, a
simple manifold, and a finite state machine, our system
generates a lively, stylized walking behavior.

walking

falling

floating

crouching

press jump

press jump

release jump
  on ground

release jump
    midair

land on ground

Figure 10: A simple state machine transitions between
behaviors based on user input, the ragdoll’s state.

Platform Puzzle Launcher
Game Game Game

Neighborhood Shape 3.3 2.2 6.0
Matching

Global Shape 0.3 0.1 0.1
Matching

Manifold Projection 5.0 8.9 2.0

Collisions 0.7 13.2 0.3

Other 1.2 1.0 0.5

Table 1: Timing results for selected examples (ms per
60Hz frame).
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Figure 11: Our ragdoll uses a bouncy I-beam like a trampoline to gain enough sideways momentum to float over a pit of
balls.

are intuitive, it might still be interesting to investigate au-
tomatic tuning – e.g. changing momentum-preservation
based on an artist-sketched bounce. Similarly, it may be
difficult for users of our system to understand if a behav-
ior they are seeing results from badly-tuned parameters or
the need for more example poses; this is also a question
that we may be able to answer algorithmically. Because
we focus on sketched input, our technique works only in
2D; however, we believe that the pose manifold concept
and the control methods we propose should generalize to
3D.

Overall, we find that our system sits at an interesting
point in the design space of methods for creating dynamic
content. By directly connecting artist-created poses with
physical properties, dynamic sprites enable artists to cre-
ate more interesting and detailed physics-based characters
and objects with less effort than either traditional sprite
sheets (which sacrifice physical realism) or rigging and
animation systems (which require several different areas
of expertise).
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