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Figure 1: This sequence of water sloshing back and forth in an invisible tank demonstrates our cartoon rendering style for liquid animations.
The sequence begins when the fluid is released from a cuboid shape, sloshes against the opposite wall, back against the first wall, and eventually
settles on the ground.

ABSTRACT

In this paper we present a visually compelling and informative car-
toon rendering style for liquid animations. Our style is inspired by
animations such as Futurama,1 The Little Mermaid,2 and Bambi2.
We take as input a liquid surface obtained from a three-dimensional
physically based liquid simulation system and output animations
that evoke a cartoon style and convey liquid movement. Our method
is based on four cues that emphasize properties of the liquid’s shape
and motion. We use bold outlines to emphasize depth discontinu-
ities, patches of constant color to highlight near-silhouettes and ar-
eas of thinness, and, optionally place temporally coherent oriented
textures on the liquid surface to help convey motion.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Non-photorealistic rendering, image processing, natu-
ral phenomena, surface tracking, semi-Lagrangian contouring.

1 INTRODUCTION

Although liquids have long been portrayed in traditional artwork
and animation, there are no techniques designed specifically for
the cartoon-style rendering of three-dimensional liquid animations.
However, non-photorealistic rendering techniques do exist for the
animation of other fluids. For example, Selle et al. [32] present a
method for cartoon rendering of smoke animations. Because these
methods are for rendering particle-based fluid flow, they are not
well-suited to free-surface liquid animations.

Liquid motion is often extremely difficult to generate by hand.
Methods do exist, however, for simulating three-dimensional liquid
motion, and have been quite successful in applications of photore-
alistic computer graphics. We leverage these simulation techniques
for non-photorealistic rendering. In this paper, we present a method
for cartoon-style rendering that demonstrates how liquid simula-
tions can be used in non-photorealistic situations. In particular, we
show that it is possible to use the output of a liquid simulator to
drive a compelling cartoon-style liquid animation. The resulting
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animation can be used as is, or, if a more stylized motion is desired,
it can serve as a quick, easy to generate starting point that an ani-
mator can modify. Our rendering style is inspired by observation of
some classic hand-animations such as Futurama,1 The Little Mer-
maid,2 and Bambi2. We demonstrate our method on a variety of
motion generated by a three-dimensional physically based liquid
simulation system. An example of this can be seen in Figure 1.

Traditional cartoon animators [23, 6] use abstractions, or sim-
plifications, to convey the important aspects of a scene with a re-
stricted set of visual cues. In the context of animating liquids, car-
toon animators convey motion and geometry in a simplified man-
ner, for example using very few colors and omitting some surface
details. Our rendering style is based on four cues that emphasize
properties of the liquid surface’s shape and motion, while evok-
ing a cartoon style. In particular, we use bold outlines to stress
depth discontinuities, and patches of constant color to highlight
near-silhouettes and areas of thinness. We also optionally apply
temporally coherent oriented textures to help convey motion and/or
stylize the animation.

As we will discuss, variations of some of the techniques used in
our rendering method have been used before in other applications.
The main contribution of our paper is in effectively combining a set
of techniques to create cartoon-style simulation-based liquid anima-
tions. The animations created with our method look like cartoon-
style liquids, even without changing the underlying simulated mo-
tion. In addition, our method is fast, easily tuned, and portable to a
variety of mainstream liquid simulation systems and renderers.

2 RELATED WORK

Several researchers have used fluid simulation techniques for non-
photorealistic rendering. Curtis et al. [10] use a two-dimensional
fluid simulation to drive a watercolorization system. The effects
are convincing, but their goal of producing synthetic watercolor
images is orthogonal to our goal of creating cartoon-style liquid
animations. Witting [38] describes a two-dimensional fluid simula-
tion system for creating smoke and liquid effects for traditionally-
animated films. They are largely concerned, however, with inte-
grating a fluid simulation system into their production pipeline, and
present stylistic effects different than ours. Selle et al. [32] success-
fully create cartoon smoke renderings from fluid simulation infor-

1 c©Twentieth Century Fox Film Corporation
2 c©Disney
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Figure 2: This figure shows a highly viscoelastic liquid bunny ‘melting’ over the side of a block.

mation. They use a particle-based fluid simulator to determine the
placement of view-facing rendering primitives. By basing the vi-
sual traits of the primitives on simulation information such as den-
sity, they are able to produce quite compelling and informative an-
imations. McGuire and Fein [29] use similar methods in their real-
time extension. While the work of Selle et al. [32] is quite similar
to ours in spirit, our underlying problems have a fundamental dif-
ference: liquids have a free surface that is the interface between the
liquid and the surrounding air, while smoke does not. An effective
cartoon rendering style for liquid animations must deal explicitly
with this free surface. Bargteil et al. [4] and Kwatra et al. [25] syn-
thesize temporally coherent textures on an animated liquid’s free
surface. These methods could provide an alternative way of achiev-
ing non-photorealistic effects, though the results would be different
from the cartoon-style described in this paper.

While a wide variety of non-photorealistic rendering styles ex-
ist [20, 34], we base our rendering style on that typical of some
traditional cartoon animations. In particular, we use a simple set
of colors and bold lines. DeCarlo et al. [12], for example, pre-
viously adopted a similar style in an effective and appealing ab-
straction of two-dimensional images. To achieve our cartoon style,
we apply several techniques to three-dimensional liquid simulation
data. Some of our techniques are similar to those used in previous
NPR methods. Gooch et al. [19] demonstrate the importance of
edge lines in the creation of understandable technical illustrations.
We place lines at edges in the depth map, using a technique simi-
lar to that introduced by Deussen and Strothotte [14] for rendering
trees, and used by Selle et al. [32] for rendering smoke. Many of
our cues are view-dependent. DeCarlo et al. [11] introduce sug-
gestive contours, and show the importance of highlighting view-
dependent information. Chi and Lee [8] and Barla et al. [5] each
define and check for near-silhouette regions. Researchers have de-
veloped a variety of toon shading techniques and software. Lake
et al. [26] present a real-time method for cartoon shading, pencil
sketching, and silhouette edge detection and rendering. Anjyo and
Hiramitsu [1] present a cartoon shader with stylized highlights. In
the context of toon rendering objects with properties common to liq-
uids, Diepstraten and Ertl [15] present a method for cartoon shading
transmissive and reflective surfaces.

There are also many techniques for the scientific visualization
of flow information in two and three dimensions [7, 37]. Visual-
ization methods seek to enhance certain features of the flow, for
example flow lines, vortices, and velocity gradients, often for pur-
poses of scientific analysis. Joshi and Rheingans [24] use features
typical to comic book illustrations in order to convey motion and
change over time in a single image. Their methods, such as the use
of strobe silhouettes and speed lines, evoke a cartoon style while
conveying important flow information. Although their methods are
intended for single frame images, it would be an interesting area
of future work to integrate their methods into cartoon-style liquid
animations. This could similarly be said for the illustrative flow
techniques of Svakhine et al. [35].

3 METHODS

Before rendering, we first generate the liquid motion using a phys-
ically based liquid simulator. The liquid simulation data provides
us with surfaces that we will later render in a cartoon-style. Our
methods should work seamlessly with any fluid simulation system
that can generate some representation of the surface and surface
normals. This representation could be a polygon mesh (our chosen
representation), a level-set, or a particle set treated as metaballs.
Applying oriented textures means tracking points across timesteps,
which also requires some notion of how the surface changes. Not
all simulators provide this information, but many could be extended
to do so. We use the staggered-grid data structure of Foster and
Metaxis [17], the semi-Lagrangian advection method introduced
by Stam [33], the extrapolation boundary condition of Enright et
al. [16], the viscoelasticity model of Goktekin et al. [18] and the
semi-Lagrangian contouring surface-tracking method of Bargteil et
al. [3].

Once we have the surfaces, we render them in a cartoon style. By
casting rays or using depth buffer information, one may check for
points on the surface that are near-silhouettes and/or at places where
the liquid is thin from the current viewpoint. In our implementation,
we use Pixie [2], a RenderMan-compliant renderer, and check for
the previously mentioned cues using two custom shaders. While
we use a ray tracer, any renderer that can return two intersections
per ray is sufficient. If we want to include oriented textures in the
animation, prior to rendering we track oriented points on the surface
through time, and map the textures onto the surface using standard
texture mapping techniques [27].

To evoke a cartoon-style, we use large regions of constant color
in the final animation. Aside from the bold black outlines and the
oriented textures, we only use three colors for the liquid in the an-
imation: one color for points at thin regions of the liquid surface,
one color for points at near-silhouettes (that aren’t also at thin re-
gions), and one color for everything else. In most of our animations,
these colors are medium blue, light blue, and dark blue, respec-
tively. In our implementation, the renderer assigns colors based on
the mapped textures (if we are including oriented textures in the fi-
nal animation), and on the responses of the two shaders. In addition
to a color image, the renderer also produces a depth map, which we
then use to find depth discontinuities. We get a final frame once
the outlines at depth discontinuities are composited with the color
image. At no point is any lighting information required.

3.1 Near-Silhouettes

We seek to highlight areas of the surface near the silhouette. This
cue is view-dependent and user-controllable. We define a near-
silhouette as a point where n · v ≤ t, where n is the unit normal
of the surface, v is the view vector, and t is a user-input threshold
(see Figure 4). In order to achieve less detail farther from the cam-
era and to avoid aliasing problems, we do not normalize v. The
shapes of the near-silhouette regions give cues as to the geometry
of the liquid, without the need for lighting information. The motion
of the near-silhouettes also helps convey the motion of the surface
– for example the motion of the ripples in Figures 1 and 3.
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Figure 3: This figure shows a ball of liquid being thrown into a shallow liquid pool.
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Figure 4: Our near-silhouette and thinness criteria. Left: Near-
silhouette criteria. Based on the angle between the view and normal
vectors, point A would be classified as a near-silhouette while point
B would not. Right: Thinness criteria. Based on the distance a ray
from the camera travels through the liquid, point A is classified as
thin, while point B is classified as thick.

3.2 Thinness

We also highlight areas where the liquid is thin – another view-
dependent, user-controllable cue. For our purposes, thinness refers
to the distance a ray from the camera travels between entering
and exiting the liquid after its first intersection. If the distance is
less than a user-input threshold, we consider the liquid to be thin
(see Figure 4). Highlighting thin regions of the liquid can give
the impression of foam crests and transparent regions of otherwise
murky liquids.

3.3 Outlines

Depth discontinuities provide extremely important cues that help
humans understand shape. Consequently, in our rendering method,
we highlight these discontinuities with bold outlines. This is
accomplished by performing edge detection on the depth map
generated during the rendering pass, similar to Deussen and
Strothotte [14].

Before doing edge detection, we first filter the depth map: Dur-
ing rendering, multiple depth samples are taken for each pixel in
the depth map and a Catmull-Rom filter is applied to these samples.
The depth map is then convolved with a Gaussian filter. Both filter-
ing steps help anti-alias the edges, produce thicker outlines at larger
depth discontinuities, and avoid depth map resolution artifacts.

After filtering the depth map we apply our edge detection
method. For each pixel we compute the maximum difference d be-
tween the inverse of its depth value and those of its four neighbors.
We pass these differences through a non-linear sigmoid function,

1
1+ exp( d−t

κ
)

(1)

with user-specified threshold t and steepness κ . This gives a
grayscale image of the depth discontinuities. Using the inverse of
the absolute depth helps achieve less detail farther away.

Since the flow is coherent, the depth discontinuities generally
change smoothly and do not flicker. However, noise in the depth

map on the magnitude of our threshold can result in some pixels er-
roneously being tagged as edges. These errors can cause flickering.
To remove these pixels, we use a filter that looks at all the pix-
els a user-specified distance (in the max-norm) away from a given
tagged pixel. If none of these pixels are also tagged as edge pixels,
the current pixel is not along an edge and is untagged.

Highlighting depth discontinuities is an image-space way of
highlighting silhouettes. Any pre-existing technique for detecting
and highlighting silhouettes can be used [21, 30, 31, 9, 13, 28].
For our purposes, we found that using a depth discontinuity-based
method offers several advantages. First, it’s user-controllable:
Users can adjust how much detail they want to highlight. It’s also
fast: The depth map can be computed, nearly for free, as part of the
rendering process. Additionally, tuning parameters is near interac-
tive since the depth map need not be recomputed. Since the method
works in image space, it is also independent of the resolution of the
mesh, and would work on other surface representations.

3.4 Tracking

To help convey motion, many cartoon animations add shapes that
appear to be attached to the surface. These textures are particularly
useful if there is motion but little change in geometry, for example
the laminar flow of a calm river. We optionally place oriented tex-
tures on the surface of the liquid by tracking oriented points. For
each texture to move faithfully with the surface, we must track not
only position on the surface, but also orientation in the plane tan-
gent to the surface.

We therefore track oriented points, each represented by a pla-
nar set of un-oriented points. By requiring that each point set
moves rigidly, we can ensure that we are always able to compute
orientation in the plane containing the points. We discuss how to
track a single un-oriented point set, or equivalently one oriented
point. Multiple oriented points may be tracked by tracking multiple
point sets. Since we are using a semi-Lagrangian surface tracking
method, it is more natural to track surface points back in time.

Our method for rigidly tracking a planar set of points from
timestep i to i− 1 comprises five stages (see Figure 5). We begin
with a set of points, Si, at timestep i which we wish to track back to
timestep i− 1 (see Figure 5a). Each point in Si is projected to the
nearest point on the surface, resulting in set P (see Figure 5b). Dis-
tortion is minimal because the points in Si lie in the tangent plane
to the surface. The semi-Lagrangian contouring surface-tracking
method of Bargteil et al. [3] provides a mapping from points on the
surface at timestep i to points on the surface at timestep i−1. Using
this mapping, we find the image of each of the points in P on the
surface at timestep i− 1, yielding set Q (see Figure 5c). Because
we are interested in the rigid transformation of the set Si as a whole,
we use Horn’s absolute orientation algorithm [22] to find the best
rigid transformation T from set Si to set Q. Applying T to Si yields
the planar set R (see Figure 5d). To ensure that the centroid of the
point set lies on the surface, and that we are able to compute an
orientation in the plane tangent to the surface, we translate and ro-
tate R such that its centroid is tangent to the surface, resulting in set
Si−1 (see Figure 5e). Note that Figure 5 is a two-dimensional ver-
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Figure 5: An two-dimensional overview of the five stages in our
method for tracking a set of points from timestep i to timestep i−1.
The green dots represent points in the set, and the red dots indicate
centroids. The point set, Si, is initially tangent to the surface at its
centroid (a). We project each point to the surface (b). For each
point in P, we find the corresponding point on the surface at the
previous timestep (c). We find the best rigid-body transformation
from Si to Q (d). We rigidly transform so that the centroid lies on
and is tangent to the surface (e).

Figure 6: This figure compares a clear rendering of sloshing water to
our cartoon rendering style.

sion of a three-dimensional process. For the rotation step depicted
in Figure 5e, we are only rotating the plane so that its normal lines
up with the surface normal; We do not rotate in-plane.

4 RESULTS

We have tested our cartoon-style rendering method on a variety of
examples of liquid behavior, such as the sloshing water example
in Figure 1. Here, near-silhouettes are especially effective at por-
traying the motion of surface ripples. We attached oriented textures
of leaves to the liquid surface in this example to help convey the
motion of the surface. A user can easily substitute any desired tex-
ture or set of textures.

Figure 2 shows frames from an animation of a viscoelastic liquid
bunny. Due to the elastic forces the bunny retains its shape through-
out most of the animation. Our rendering style highlights both the
bunny shape and the liquid motion. Here, highlighting areas of
thinness, most notable on the bunny’s ears, and the near-silhouette
along the back, are especially effective. Figure 3 shows frames
from a ball of liquid being thrown into a shallow liquid pool. The
near-silhouettes convey much of the important shape information
without making the frames appear too detailed.

Figure 6 shows a comparison of a clear photorealistic rendering
style with our cartoon rendering style. Both are able to convey in-
formation about the surface geometry, but in very different ways.
Additionally, even though the same simulated motion drove both
animations, many viewers commented that the cartoon rendering
made the liquid motion appear more cartoonish. Some viewers,
however, said they expected the cartoon rendering to have more
cartoon-like motion. Generating cartoon motion would be an inter-
esting area of future work.

Figure 7 shows a frame from an animation of a fountain with
two different rendering styles. For the right image we extended the

Figure 7: This figure shows frames from two versions of a spurt-
ing fountain animation. Although the liquid does not separate as
it falls, one can see that parts of the liquid do get very thin. Left:
Uses the depth-discontinuity, near-silhouette, and region of thinness
methods. Right: We’ve enhanced the animation with a technique
that highlights the surface behind thin regions.

thinness technique (Section 3.2) to show geometry behind thin re-
gions of the liquid. Wherever the liquid was thin, we checked the
distance the view vector traveled from exiting the liquid after its
first intersection, to entering the liquid again as its second intersec-
tion. If this distance was within a user-defined range, we colored
that point purple. Finally, Figure 8 shows an animation of a block
of viscoelastic fluid being dropped on the Stanford Bunny.

Our method is fast and easily generalized to a variety of standard
simulators and renderers. Our simulations take approximately two
to four minutes per timestep, with four to five timesteps per frame.
Tracking takes less than one minute per timestep, even when track-
ing several hundred points, and is a pre-processing step; in order
to change which specific textures are used, one just has to remap
the textures. Rendering each frame, including the depth map, takes
three minutes on average. Each frame was rendered at 1280x960
and subsampled to 640x480 for additional anti-aliasing. Finding,
filtering, and compositing the bold outlines takes about three sec-
onds total per frame. These timings were taken without hardware
accelerations or optimizations.

5 CONCLUSION

We have presented a method for rendering compelling cartoon-style
liquid animations, based on four cues that emphasize properties of
a liquid surface’s shape and motion. The animations are driven by
the output of a liquid simulator, thus extending the possible uses
of liquid simulation systems to include non-photorealistic applica-
tions. Our method is quick, easy to use, and simple to implement.
The user-specified parameters are intuitive and can be tuned at a
rate that is near-interactive.

We note that our method doesn’t produce animations which are
indistinguishable from hand-drawn cartoons. Rather, they are in-
spired by hand-drawn cartoon animations. One point of note is that
we use realistic motion with unrealistic rendering. We find that
the cartoon rendering style alters the viewer’s perception of the liq-
uid so that it appears more cartoonish. However, if an even more
cartoonish feel is needed, creating cartoon motion or altering the
simulator to achieve it would be an interesting area of future work.
Thorton [36], for example, demonstrates a directable particle sim-
ulation system for creating stylized water splash effects in three-
dimensions.
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Figure 8: This figure shows a block of viscoelastic liquid falling on the Stanford Bunny.
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