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Figure 1: Images from several example scenes using our technique.

ABSTRACT
Position-based dynamics has emerged as an exceedingly popular
approach for animating soft body dynamics. Unfortunately, the
basic approach suffers from artificial loss of angular momentum.
We propose a simple approach to preserve global linear and angu-
lar momenta of bodies by directly tracking these quantities and
adjusting velocities to ensure they are preserved. This approach
entails negligible computational cost, requires less than 25 lines of
code, and exactly preserves global linear and angular momenta.
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1 INTRODUCTION
Position-based dynamics has emerged as a popular tool for com-
puter animation of soft body dynamics. However, the approach
suffers from significant loss of angular momentum, especially for
stiff materials. For softer materials the loss of angular momentum
is less objectionable, however, if the common mass-proportional
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damping model is employed, as in Bullet, it will damp rigid body
motion.1

Inspired by the pioneeringwork of Terzopoulos andWitkin [1988],
we propose a straightforward fix: decouple rigid body motion and
deformation. We explicitly track the global linear and angular mo-
menta of the body through time and use these quantities to correct
nodal velocities. Specifically, we advance the position-based dy-
namics as usual keeping track of any collision impulses (or other
external forces) applied to the object. At the end of the timestep, we
update the global linear and angular momenta of the body based
on the impulses applied during the timestep. We then correct the
velocities of the soft body mesh to preserve the global momentum.

This approach is simple to implement, adds negligible cost, and
exactly preserves global linear and angular momenta. We have im-
plemented our approach for soft bodies in the popular Bullet physics
engine [Coumans 2014]. Frames from several example scenes can
be seen in Figure 1.

Our contributions include both demonstrating analytically and
experimentally that position-based dynamics does not preserve en-
ergy or angular momentum and presenting an approach to restore
this lost momentum.

2 RELATEDWORK
For a detailed review of position-based dynamics, we refer the
reader to the survey by Bender and colleagues [2014b] or the more
recent course notes by Bender and colleagues [2017].

The idea of treating elastic deformation with constraints dates
at least to the work of Provot [1995] who enforced a maximum
extension to springs in a spring-mass system, an idea commonly
refered to as strain limiting. Perhaps the first to entirely forgo force
calculations and treat elasticity exclusively through constraints was
Jakobsen [2001] in his Fysix system. Müller and colleagues [2007]
generalized this approach to general constraints and coined the
term position-based dynamics. Stam [2009] implemented a variation
of position-based dynamics for the Nucleus engine in Maya. In

1We note that Müller and colleagues [2007] did introduce a damping model that avoids
damping rigid modes and is very similar to the approach we propose. However, most
position-based dynamics codes do not seem to employ this model.
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all these approaches, compliance of elastic bodies is achieved by
explicitly choosing not to enforce constraints exactly. Typically
one iterates over the constraints approximately enforcing them
one-by-one, with more iterations resulting in a stiffer material.

Due to the method’s unconditional stability it has seen wide-
spread adoption, especially in interactive environments and has
remained a popular research topic. Kelager and colleagues [2010]
introduced a triangle bending model. Macklin and Müller [2013]
extended the method to fluids. Macklin and colleagues [2014] in-
troduced a unified system able to handle soft bodies, rigid bodies,
and fluids. Bender and colleagues [2014a] extended PBD to con-
tinuum models by applying constraints to a computed stress. In
concurrent work, Mueller and colleagues [2014] added constraints
on the components of Green’s strain, allowing for anisotropy and
separate handling of stretch and shear deformations. Macklin and
colleagues [2016] introduced XPBD, which addressed the depen-
dence of apparent stiffness on iteration count and time step and
results in a method that more closely resembles traditional implicit
integration, though they retain the general approach of solving
directly for positions rather than velocities.

Our approach is inspired by the work of Terzopoulos and Witkin
[1988], which factors motion into rigid body motion and deforma-
tion. We similarly track a body’s global linear and angular momenta
and enforce these as a constraint on the particles’ velocities. Our
approach is very similar to the damping model originally proposed
by Müller and colleagues [2007] in that both involve projecting out
rigid modes. While their approach sought to avoid damping rigid
modes, our approach seeks to preserve rigid momentum.

Finally, we note that Bender and colleagues [2017] discuss reduc-
ing damping by adopting a higher order velocity update based on
BDF2 [English and Bridson 2008]. This approach is quite effective at
reducing damping, but can result in instability and does not exactly
preserve momentum.

3 BACKGROUND
For simplicity of exposition, we assume that our soft body is rep-
resented by a mesh of nodes and that edges represent constraints
between those nodes, similar to a traditional Spring-Mass network.
Generalizations beyond this case, for example to strain-based con-
straints, should be straightforward.

Algorithm 1 Position-based Dynamics
1: for Node n : nodes do
2: n.oldpos = n.pos
3: n.vel += dt ⋅ frc / n.mass
4: n.pos += dt ⋅ n.vel
5: end for
6: for i<niterations do
7: projectConstraints(constraints, nodes)
8: end for
9: for Node n : nodes do
10: n.vel = (n.pos - n.oldpos) / dt
11: end for

`

Figure 2: A simple example demonstrating the loss of angu-
lar momentum present in PBD.

3.1 Position-based Dynamics
Algorithm 1 summarizes the basic position-based dynamics algo-
rithm. We first loop over all the nodes integrating velocities (based
on external forces such as gravity) and positions forward in time.
Then there are some number of iterations where constraints are
enforced by directly updating the nodes’ positions. Importantly,
constraints are not typically solved exactly, allowing for some de-
formation. Finally, we loop over the nodes again setting the velocity
based on the change in position.

Line 10 in Algorithm 1 is critical to understanding the loss of
angular momentum when using PBD. Without line 10, PBD would
resemble more traditional constraint-based approaches in simula-
tion. Examples of such approaches include using Lagrange multipli-
ers (i.e. pressure values) to enforce the divergence free constraint
in fluid simulation and strain limiting in cloth simulation. In these
approaches, kinetic energy is explicitly removed from the system
instead of being stored as internal energy. Line 10, however, casts
PBD as an optimization method that solves for positions directly
and updates velocities instead of the more traditional approach that
solves for velocities and then updates positions [Baraff and Witkin
1998]. Thus the artificial loss of angular momentum in PBD stems
not from explicit removal of energy, but from the linearization in
the velocity update in line 10.

3.2 A Simple Example
We begin with a simple example that demonstrates why PBD leads
to loss of angular momentum (see Figure 2). Imagine two parti-
cles with mass 1 at positions (1, 0)𝑇 and (−1, 0)𝑇 connected by a
constraint. Let the first particle have velocity (0, 1)𝑇 and the other
(0, −1)𝑇 . If we take a timestep of size 1 second, the particles positions
will be (1, 1)𝑇 and (−1, −1)𝑇 , respectively. Now if we enforce the con-
straint the particles will move to (1/

√
2, 1/

√
2)𝑇 and (−1/

√
2, −1/

√
2)𝑇 ,

respectively. When we update the velocities based on the change in
position, we get (1/

√
2 − 1, 1/

√
2)𝑇 ) and (−1/

√
2 + 1, −1/

√
2)𝑇 ). Clearly

the (kinetic) energy of the system, 1
2𝐯

𝑇𝐌𝐯, before the timestep was
1 joules and after the timestep it has been reduced to 2 −

√
2 ≈ 0.59

joules. More than 40% of the energy has been lost. Similarly, the an-
gular momentum decreases inmagnitude from 2 kg⋅m/s to

√
2 ≈ 1.41

kg⋅m/s, dumping almost 30% of the angular momentum.
We stress that this example is simple and clearly demonstrates

that basic PBD necessarily lose energy, but that the example is
not typical of simulations that use position-based dynamics. In
practice the loss of angularmomentum is less pronounced, primarily
because constraints are not fully satisfied. However, the loss of
angular momentum is usually significant enough to be noticed.
Figure 3 shows the falloff of kinetic energy and angular momentum
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Figure 3: Falloff in kinetic energy (top) and angular momen-
tum (bottom) for a simple example of two mass points con-
nected by a single spring. The purple curves show the falloff
when the constraint is perfectly enforced, the green curves
show the falloff when the constraint is softened, and the
blue curves show the falloff when the constraint is soft, but
mass-proportional damping is added.

of several three dimensional versions of this simple example of
two mass point connected by a single constraint. Video results are
included in the supplemental material. The purple curves show the
falloff when the constraint is perfectly enforced, the green curves
show the falloff when the constraint is softened, and the blue curves
show the falloff when the constraint is soft, but mass-proportional
damping is added.

4 METHOD
In this section we describe our approach for momentum preserva-
tion. Suppose that after time integration and collision processing
the velocity of the body is described by a vector �̂� of nodal velocities
with length 3𝑛, where the soft body mesh has 𝑛 nodes. Also suppose
that the rigid linear and angular momenta, 𝐏𝑟 and 𝐋𝑟 respectively,
are 3-vectors that are updated through time to account for collision

Algorithm 2 Momentum Preservation

1: m = 0.0;
2: com = 0.0;
3: I = 0.0;
4: P_pbd = 0.0;
5: L_pbd = 0.0;
6: for Node n : nodes do
7: m += n.mass
8: com += n.mass ⋅ n.pos
9: end for
10: com /= mass
11: for Node n : nodes do
12: r = n.pos - com
13: I += n.mass ⋅ star(r) ⋅ star(r).transpose()
14: P_pbd += n.mass ⋅ n.vel
15: L_pbd += n.mass ⋅ r.cross(n.vel)
16: end for
17: v_cor = (P_r - P_pbd) / m
18: omega_cor = I.inverse() ⋅ (L_r - L_pbd)
19: for Node n : nodes do
20: n.vel += v_cor + omega_cor.cross(n.pos - com)
21: end for

impulses and external forces. For example, if an impulse, 𝐢, is ap-
plied to node 𝑛𝑖 with position 𝐱𝑖 , then the rigid linear and angular
momenta are updated as

𝐏𝑟+=𝑚𝑖𝐢 (1)
𝐋𝑟+=𝑚𝑖 (𝐱𝑖 − 𝐜𝐨𝐦) 𝐢, (2)

where 𝐜𝐨𝐦 is the body’s center of mass.
Finally, let 𝐏𝑝𝑏𝑑 , 𝐋𝑝𝑏𝑑 , 𝑚, and 𝐈 be the linear momentum, angular

momentum, total mass, and inertia tensor, respectively, implied
by the mass, position, and velocity of the PBD particles. These
quantities are easily computed by looping twice over the nodes (see
Algorithm 2). We can then compute corrections for the linear and
angular velocities,

𝐯𝑐𝑜𝑟 = (𝐏𝑟 − 𝐏𝑝𝑏𝑑) /𝑚 (3)
𝜔𝑐𝑜𝑟 = 𝐈−1 (𝐋𝑟 − 𝐋𝑝𝑏𝑑) , (4)

and update the nodal velocities. Pseudocode is given in Algorithm 2.
Here the star(⋅) operator applied to vector 𝐫 yeilds the cross-product
matrix,

𝐫∗ =
⎛
⎜
⎜
⎝

0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

⎞
⎟
⎟
⎠

(5)

After initializing accumulators (lines 1-5), the first loop computes
the center of mass (lines 6-10). The second computes the inertia
tensor and the soft body simulation’s estimate of the linear and
angular momenta (lines 11-16). Then a velocity correction is com-
puted (lines 17-18) and a third loop applies this correction to the
nodes (lines 19-21).

A more complete derivation is given in Appendix A.

Integration into Position-based Dynamics. We used Bullet
for our Position-based Dynamics engine. Integrating our approach
into Bullet was straightforward. Our algorithm updates the soft
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Figure 4: Frames from another scene created using our approach for momentum preservation.

bodies’ velocities directly at the end of the timestep, i.e. after line 11
in Algorithm 1. Additionally, as Bullet processes collisions, applying
impulses, we update the global linear and angular momenta of
our soft bodies. An alternative approach would track not only
the linear and angular momenta through time, but also integrate
these to track position and orientation as in a typical rigid body
simulation. Then we could treat the constraint that the soft bodies
position and orientation match the tracked values just like any
other position-based dynamics constraint and include them in the
constraint projection in line 7 of Algorithm 1.

5 RESULTS AND DISCUSSION
Because momentum is difficult to gauge from still frames, please
see the accompanying video for several demonstrations of our tech-
nique and comparisons to the behavior of position-based dynamics
without our momentum preservation approach. Table 1 shows the
time taken to perform the correction per frame compared to the
total time of the simulation per frame. The video begins with our
simple example with two mass points connected by a constraint.
We then show another didactic, but more complex, example of a
rotating cube. A few more practical examples follow and frames
from these scenes are in Figure 1. Several frames from our final
example are shown in Figure 4.

We note that friction was disabled in all examples to avoid mud-
dling the effects of friction and damping. Additionally, in all compar-
isons, our momentum preserving example used the same damping
coefficient as the damped default version.

Limitations and Future Work. The biggest limitation of our
approach is that in a large subset of practical applications it is
solving a non-problem—the loss of angular momentum present in
many position-based dynamics simulations is not noticeable unless
compared against a momentum preserving simulation. However,
we believe that if our approach was added as a feature in position-
based dynamics packages, it would probably be used by default
because it dramatically improves results in extreme cases, mildly
improves results in most cases, and in no case degrades results.

Our general approach of separating rigid motion from deforma-
tion should be applicable to almost any soft body simulation and
would be useful in other simulation environments prone to loss
of angular momentum due to numerical issues or approximation
errors.

In summary, our technique for momentum preservation for
position-based dynamics is simple and entails negligible computa-
tional cost. We encourage anyone using position-based dynamics
to incorporate our approach.
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A DERIVATION
Letting 𝚿 = (𝐏𝑟 𝐋𝑟 )𝑇 , we can setup the following system

(
𝐌 𝐉𝑇
𝐉 𝟎 )(

𝐯
𝜆 ) = (

𝐌�̂�
𝚿 ) . (6)

Here,𝐌 is the 3𝑛 × 3𝑛 nodal mass matrix for the soft body mesh, 𝐯
contains the 3𝑛 nodal velocities that preserve the global momentum,
𝜆 contains 6 Lagrange multipliers, and 𝐉 is 6×3𝑛 matrix where each
6 × 3 block is given by

𝐉𝑖 = (
𝑚𝑖𝐈3
𝑚𝑖𝐫∗𝑖 ) (7)

where 𝐈3 is the 3 × 3 identity matrix, 𝐫𝑖 is the vector from the body’s
center of mass to node 𝑖, and 𝐫∗ is the cross product matrix.

Taking the Schurr Compliment to remove the Lagrange multi-
pliers we have,

𝐯 = �̂� +𝐌−1𝐉𝑇 (𝐉𝐌−1𝐉𝑇 )
−1 (𝚿 − 𝐉�̂�) . (8)

Unfortunately, this matrix equation obscures what is intuitively
very straightforward. 𝐉�̂� gives the length 6 vector of linear and
angular momenta of the soft body mesh. Subtracting this from the
rigid momenta 𝜓 gives the required correction. The 6 × 6 matrix
(𝐉𝐌−1𝐉𝑇 )

−1 simplifies to

(𝐉𝐌−1𝐉𝑇 )
−1 = (

1
𝑚 𝐈3 𝟎
𝟎 𝐈−1 ) , (9)

where 𝑚 and 𝐈 are the mass and inertia tensor for the body. Thus,
this matrix simply converts the momentum correction to a velocity
correction. 𝐌−1𝐉𝑇 is a 3𝑛 × 6 matrix of where each 3 × 6 block is
given by

(
𝐈3
𝐫∗𝑇𝑖 ) , (10)

which maps the velocity correction to the soft body nodes.
We note that while Algorithm 2 seems entirely reasonable, it

was not immediately obvious to us. For example, we did not an-
ticipate that momentum would be converted to velocity in the
6-dimensional rigid body space. We also note that another view
of our approach is that we are projecting out the rigid degrees of
freedom from the soft body velocity and replacing them with our
alternatively tracked values.
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