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Figure 1: Images from an example scene with conjugate gradient iterations limited to 1, 2, 5, 10. An initial guess of 0 is used.

ABSTRACT
Since the introduction of the conjugate gradient method to com-
puter graphics, researchers have largely treated it as a black box.
In particular, an arbitrary small value is chosen for the tolerance
and the method is run to convergence. In the context of soft body
animation, this approach results in significant wasted computation
and has led researchers to consider alternative, more complex, and
less versatile approaches. In this paper we argue that in the context
of corotational finite elements, less than 10 iterations can give a
good enough solution and substantial savings of computational cost.
We examine the use of different preconditioners for conjugate gra-
dient including the mass and Jacobi matrices, as well as the use of
different initial guesses. We show that for our examples an initial
guess of the previous velocity and the Jacobi preconditioner works
best.
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1 INTRODUCTION
Since the introduction of the conjugate gradient method [Shewchuk
1994] to computer graphics by Baraff and Witkin [1998] more than
twenty years ago, researchers have largely treated it as a black box.
In particular, an arbitrary small value is chosen for the tolerance
and the method is run to convergence1, perhaps with a maximum
of 100 or 1000 iterations. This approach achieves good solutions,
dissuading researchers from giving further thought to the method’s
behavior. However, in the context of soft body animation, this naïve
approach results in significant wasted computation and has led
researchers to consider alternative, more complex, and less versatile
approaches. In this paper we ask the question “how many iterations
are required to achieve a good (enough) solution?” In the context of
corotational finite element simulations of soft bodies using linearly
implicit Euler time integration we find that, for most examples, only
a couple iterations are necessary to achieve good results. For some
examples, a single iteration is sufficient. Ten iterations is typically
overkill. This finding saves significant computation time and makes
the conjugate gradient method competitive with other techniques.

As with all optimization techniques, choosing a good starting
point is critical to reaching a good solution quickly. We experi-
mented with three initial guesses for the solution and find that
the best initial guess for the velocity at time t + ∆t is the velocity
at time t . We also experimented with several preconditioners and
provide some analysis and intuition of the behavior of the con-
jugate gradient method with different formulations of the linear
system. We also show that a similar philosophy can be used to
reduce the computation time for the polar decompositions required
1Typically, researchers follow Shewchuk [1994] and define convergence to be when
the 2-norm of the residual falls below some tolerance, either absolute or relative. In our
examples, we use the relative criterion r · r ≤ (1e-10) ∗ b · b, where r is the residual
and b is the right hand side of the linear system.
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for corotational elasticity. The end result is a system for solving
elasticity problems with corotational finite elements that is con-
siderably faster than a naïve alternative and is competitive with
more complicated state-of-the-art techniques that often come with
additional limitations.

2 RELATEDWORK
A detailed discussion of conjugate gradients is beyond the scope
of this paper, we refer the reader to Shewchuk’s [1994] excellent
introduction to the topic.

Corotational finite elements were introduced to graphics by
Müller and colleagues [Müller et al. 2002; Müller and Gross 2004].
The method requires less computation than non-linear strain finite
elements [O’Brien and Hodgins 1999] and avoids the severe distor-
tions of linear elasticity [Hauser et al. 2003]. The method remains
popular and is often employed with linearly implicit Euler time inte-
gration, which is solved with a conjugate gradient method [Parker
and O’Brien 2009]. This approach is simple and versatile, handling
a wide variety of scenarios with few limitations and very little
precomputation.

Recently, researchers have developed faster techniques that make
use of precomputation of matrix decompositions or clever precon-
ditioners [Bouaziz et al. 2014; Brandt et al. 2018; Dinev et al. 2018;
Hecht et al. 2012; Liu et al. 2013; Narain et al. 2016; Wang 2015;
Wang and Yang 2016]. Some of these approaches place limits on
material models or other aspects of the animation. We take a dif-
ferent approach; we adopt the classic approach of linearly implicit
Euler time integration of corotational finite elements with the con-
jugate gradient method. However, instead of running conjugate
gradients to convergence, we show that good results are obtained
after a couple iterations. We take the same approach to comput-
ing the polar decompositions that form the basis of corotational
finite elements, finding that the decomposition is typically “sym-
metric enough” after a single iteration. Our approach does not
require any precomputation and has the advantages of simplicity
and extensibility—incorporating additional effects such as fracture
or plasticity does not require any special treatment beyond updating
the element stiffness matrices.

3 METHOD
3.1 Corotational Finite Elements
For completeness, in this subsection we briefly review the coro-
tational strain formulation of finite elements. We largely follow
the approach of Parker and O’Brien [2009]. Those familiar with
corotational finite elements may safely skip this subsection.

We assume that the deformable body is decomposed into a finite
set of elements—disjoint tetrahedra. Tetrahedra share faces, edges,
and vertices, the latter of which we refer to as nodes. In material
space, the nodes have positions, ui . The nodes also have world space
positions, xi , and velocities, vi . Let Du be the matrix composed of
vectors along the edges of a tetrahedron,

Du =
(
(u1 − u0) (u2 − u0) (u3 − u0)

)
. (1)

Let Dx be defined similarly. Then, the deformation gradient is given
by

F = DxD−1
u . (2)

For corotational strain, we then take the polar decomposition of F,

F = QF̃, (3)

where Q is an orthonormal rotation matrix, and F̃ is symmetric. We
then define strain as a linear function of F̃,

ϵ =
1
2

(
F̃ + F̃T

)
− I3, (4)

where I3 is the 3-dimensional identity matrix. Assuming a linear
isotropic stress-strain relationship, stress can be computed as

σ = λTr (ϵ) I3 + 2µϵ, (5)

where λ and µ are the Lamé material parameters. Elastic forces are
given by,

fi =
1
3

Qσni , (6)

where ni is the area-weighted outward normal of the face oppo-
site node i in reference coordinates. Alternatively, forces may be
computed globally as

f = K (x − u) , (7)

where K is the global stiffness matrix and the vectors f , x, and u
contain the values for all the nodes of the mesh. The Jacobian of fi
with respect to node j is the 3 × 3 matrix,2

Ki j = −
1

36v
Q
(
λninTj + µ

(
ni · nj

)
I3 + µnjnTi

)
QT , (8)

wherev is the volume of the tetrahedron. In the absence of plasticity
or fracture, only the rotation, Q, varies with time, allowing the
other terms to be precomputed. In practice, these 3 × 3 matrices
are assembled into a sparse, global stiffness matrix K. For each
pair of nodes i and j that share an edge, every tetrahedral element
that shares that edge will make a contribution to the 3 × 3 block
in the global stiffness matrix. This is typically implemented as a
sum over all elements, with each element computing a new polar
decomposition and then, for each of 16 pairs of nodes, performing
two 3 × 3 matrix multiplies and accumulating the result into global
stiffness matrix. For Rayleigh damping, the global damping matrix,
D, is some scaled combination of M and K.

3.2 Time Integration
Temporal integration in our implementation is done using linearly
implicit Euler. Specifically, we solve the linear system(

M − ∆t2K − ∆tD
)

v(t + ∆t) = Mv(t) + ∆t (felc + fext ) , (9)

where M is the lumped nodal mass matrix, felc are the elastic forces
in Equation (6), and fext are external forces. Damping forces do not
appear on the right hand side due to cancellation in the derivation.
We consider an alternate formulation in Section 4. We advocate
solving this linear system with a couple iterations of the conjugate
gradient method. As with any optimization, choosing an initial
starting point is key to success. We considered three initial guesses
for v(t + ∆t): 0, v(t), and v(t) + ∆tM−1 (felc + fext ). We achieved
the best results by starting the optimization with v(t).

Positions can then be updated by,

x(t + ∆t) = x(t) + ∆t · v(t + ∆t). (10)
2Parker and O’Brien [2009] left out the 1/36v term in their version of Equation (8)
(Equation (2) in their paper).
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Table 1: Table of the simulation time for the examples and initial guesses in milliseconds. All timing is done with the Jacobi
preconditioner. The average iteration count for convergence is also supplied. Force, system matrix, and collision are from
running to convergence. *These faster computation times are because the simulations quickly go unstable.

Time ms/frame Max Iterations

1 2 5 10 Convergence Convergence
Iterations Forces System Matrix Collision

Bowling 0 0.565 0.581 0.944 1.235 6.689 78 5.465 1.653 227.449
v(t)+f 0.325 0.364 0.408 1.105 6.614 81 5.422 1.643 226.681

475 Vertices v(t) 0.515 0.619 0.845 1.196 6.082 75 5.359 1.478 225.102
Snowman 0 0.334 0.466 0.840 1.469 8.991 71 8.336 2.898 -

v(t)+f 0.211 0.216 0.279 1.465 7.464 58 8.293 2.939 -
508 Vertices v(t) 0.334 0.468 0.840 1.507 7.771 60 8.331 2.920 -
Cars Spin 0 3.076 4.270 7.924 13.613 74.304 59 87.863 27.107 781.055

v(t)+f 1.935 2.085 2.520 13.739 74.579 60 87.753 26.710 785.346
4734 Vertices v(t) 3.143 4.304 7.866 13.745 69.060 55 87.878 23.860 782.972

Figure 2: Same frame of the bowling example with 10 con-
jugate gradient iterations using different initial guesses; 0
(top), v(t) (middle), and v(t) + ∆tM−1 (felc + fext ) (bottom)

The initial guess of 0 is guaranteed to be stable at every itera-
tion, unlike v(t), and v(t)+∆tM−1 (felc + fext ). However, multiple
iterations are required to remove the excess damping. In all our
examples, we found that 0 required more iterations than v(t) to
reach visually similar results. This can be seen in Figure 3 in the
number of iterations it takes to get close to the solution. There
were concerns that v(t) would be unstable with a few iterations
from large deceleration during collisions, but this did not occur in
practice.

3.3 Polar Decomposition
The most straightforward approach to computing the polar decom-
position is to use a “black box” singular value decomposition (SVD)
routine, such as Eigen::JacobiSVD, to compute F = UΣVT and
then compute Q = UVT and F̃ = QT F. However, as suggested
by Bridson [2011] a more direct Jacobi iteration approach can be
used that consists of iteratively solving 2 × 2 subproblems using a
closed form solution until F̃ is sufficiently symmetric. Please see
the supplementary material for source code for this method. Be-
cause Equation (4) essentially symmetrizes F̃, the decomposition
quickly achieves the “sufficiently symmetric” state and, as with
conjugate gradients, we have found that a few iterations delivers
sufficient accuracy and is substantially faster than off-the-shelf SVD
codes.

4 RESULTS AND DISCUSSION
We first analyze the residuals for the different initial guesses and
then consider an alternate formulation of our linear system before
summarizing the impact of different preconditioners and initial
guesses and consider limitations and future work.

Residuals. It is instructive to examine the residuals for each of
our initial guesses because the residuals determine the initial search
direction for conjugate gradients. Specifically, for residual r and
preconditioner P, the initial solution will be updated by αP−1r, for
some scalar value α . For an initial guess of 0, the residual is

r = Mv(t) + ∆t (felc + fext ) , (11)

which, if P = M, is essentially the forward Euler direction. For an
initial guess of v(t), we get a residual of

r = ∆t (felc + fext ) + ∆t2Kv(t) + ∆tDv(t)

= ∆t
(
felc + fext + fdamp

)
+ ∆t2Kv(t),

(12)

which again is similar to a forward Euler step with the momentum
term removed as it is accounted for in the initial guess. There is
the additional ∆t2Kv(t) term, which accounts for elastic forces that
would occur if the body continues moving with velocity v(t).
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Figure 3: Kinetic energy of a single conjugate gradient solve
for the bowling (top) and car spin (bottom) examples.

The residual when choosing v(t) + ∆tM−1 (felc + fext ) as the
initial guess is less intuitive. It is essentially a high pass filter of the
forward Euler update.

Alternate Formulation. Baraff and Wikin [1998] used a slightly
different formulation of the linear system(

M − ∆t2K − ∆tD
)
(v(t + ∆t) − v(t)) =

∆t
(
felc + fext + fdamp

)
+ ∆t2Kv(t),

(13)

In this case the most straightforward initial guess is 0, which re-
sutls in a residual of ∆t

(
felc + fext + fdamp

)
+∆t2Kv(t). Thus this

formulation results in identical conjugate gradient iterations as our
formulation with an initial guess of v(t).

Preconditioners and Inital Guess. We also considered different
preconditioners. We experimented with the identity I, mass matrix
M. and the Jacobi preconditioner J. For all our examples, the identity
and mass matrix were roughly equivalent. As shown in Figure 4 for
the car sideways collision example, they are indiscernible from each
other with all 3 initial guesses. The Jacobi preconditioner typically
reached convergence in 1/5th as many iterations as the others and
had less variation, most notable in the v(t) guess in Figure 4. We do
not consider the incomplete Cholesky preconditioner in this paper
because it needs to be recomputed (or updated) every timestep for
corotational finite elements, which is impractical for only a few
iterations of conjugate gradients.

Implicit integration removes the need for small time steps and
allows us to take large steps. However, by stopping the implicit solve
so early, we no longer have this property. Taking the initial guess of
the velocity as an example, the time step starts to matter much more
with collisions. This initial guess works well because it starts close
to the solution, but during collisions that solution will move. As the
object is elastic, the solution location doesn’t change instantly, but

moves there over time. With small time steps, the change per step
is small and the early stoppage keeps us close. However, with large
time steps wemay not get close enough, leading to noticeable errors.
All our examples were run with a time step of 1/150, or 5 steps per
frame for 30fps. This was sufficient to get usable results with 5-10
iterations. We note that while researchers have long pursued large
time steps, Macklin and colleagues [2019] also recently advocated
for small time steps in physics simulations.

Table 1 shows the timing results for a couple of the examples.
The times are the time in milliseconds per frame to perform the
conjugate gradient solve, the force evaluations, building the system
matrix, and the collision resolution. The forces, system matrix, and
collision columns reported only depend on the mesh resolution.
Total simulation time is left out as it depends on the number of
iterations run. The average number of iterations to convergence is
supplied next to the convergence timing. As each object has its own
conjugate gradient solve, we chose the max iteration value as that
object is the limiting factor. While v(t) + f is included in the table
for completion and shows good timing, it is not that beneficial. The
bowling and multi examples are not stable with 10 iterations and
the cars spinning and snowman example only start being stable
around 10 iterations. The initial guess of 0 is consistently slightly
faster than the velocity, however the examples still have notable
artificial damping with 10 iterations.

Limitations and Future Work. This short paper demonstrates that
the conjugate gradient method combined with linearly implicit
Euler and corotational finite elements may be competitive with
existing techniques for real-time animation of soft bodies, but it
leaves open many directions for future work, including a more com-
prehensive comparison to alternative approaches such as projective
dynamics [Bouaziz et al. 2014; Liu et al. 2013; Wang 2015]. Our
experiments are limited to volumetric soft bodies where the linear
system is guaranteed to be positive definite. It would be interest-
ing to explore thin sheets and cloth where the linear systems may
have negative Eigenvalues [Liu et al. 2013] that may lead linearly
implicit Euler diverge. It would also be interesting to explore the
behavior of the conjugate gradient method in a non-linear Newton
solver [Chao et al. 2010].

Additional areas of future work include exploring an initial
guess between the previous solution and an Euler step, i.e. αv(t) +
(1 − α)

(
v(t) + ∆tM−1 (felc + fext )

)
, and exploring exit criteria be-

yond iteration count and magnitude of the residual. Finally, our
implementation explicitly builds and stores the linear system. It
would be interesting to explore a matrix-free implementation; be-
cause the matrix is only applied a few times, the cost of building
the system may not be sufficiently amortized.

In summary, our results show that conjugate gradients with early
termination for corotated finite elements is a viable approach to
animating soft bodies. The approach has the advantages of simplic-
ity and extensibility; no precomputation is necessary and features
such as fracture and plasticity do not require any special treatment,
such as recomputing a matrix factorization.
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