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Abstract—In this paper, we present a straightforward, easy to implement
method for particle skinning—generating surfaces from animated particle data.
We cast the problem in terms of constrained optimization and solve the optimiza-
tion using a level-set approach. The optimization seeks to minimize the thin-plate
energy of the surface, while staying between surfaces defined by the union of
spheres centered at the particles. Our approach skins each frame independently
while preserving the temporal coherence of the underlying particle animation.
Thus, it is well-suited for environments where particle skinning is treated as a
post-process, with each frame generated in parallel. Moreover, our approach
is integrated with the OpenVDB library and the underlying partial differential
equation is amenable to implicit time integration. We demonstrate our method
on data generated by a variety of fluid simulation techniques and simple particle
systems.

Index Terms—Particle skinning, level-set methods, particle systems, fluid sim-
ulation, surface smoothing, constrained smoothing.

1 INTRODUCTION

Particles are a ubiquitous primitive in computer animation.
From simple particle systems to high-resolution smoothed
particle hydrodynamics simulations, particles have been used
to animate a vast range of phenomena and a huge number
of special effects. While early particle systems rendered the
particles directly into a framebuffer [31], [36], more recently
it has become common to use the particles to define a volume,
which is bounded by a surface. Consequently, a vast number of
techniques and industry tools have been developed to generate
surfaces defined by particle animations, an operation we refer
to as particle skinning.

Inspired by the work of Williams [44], we cast particle
skinning as a constrained optimization problem: intuitively, we
seek the “smoothest” surface that approximates the geometry
implied by the particles. We formalize the intuitive notion
of “smoothness” by minimizing the thin-plate energy of the
surface. To ensure that the surface captures the geometry
implied by the particle set we constrain the surface to lie
between two surfaces Smin and Smax, defined as the constructive
solid geometry (CSG) union of spheres of radius rmin and rmax,
respectively, centered at the particles (see Figure 1).

Our key technical contribution is that, unlike Williams [44],
we solve this optimization problem using a level-set approach.
We store signed-distance functions that represent the con-
straint surfaces and the surface being smoothed. Enforcing
the constraints is as simple as taking a min and max for
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Fig. 1. Our approach seeks a smooth surface (red curve) that is
constrained to lie between two surfaces, Smin (green curve) and
Smax (blue curve), defined by the union of spheres centered at
the particles (orange points).

each grid-point after each smoothing iteration. Smoothing is
accomplished by solving a level-set equation based on the
biharmonic operator, ∇4. Our level-set approach allows us to
use the same spatial discretization for every frame, which is
key to achieving temporal coherence even though we process
every frame independently.

We achieve efficient memory utilization and multi-
threaded computation by integrating our approach with Open-
VDB [25]—“an open source C++ library comprising a novel
hierarchical data structure and a suite of tools for the efficient
storage and manipulation of sparse volumetric data discretized
on three-dimensional grids.” [28] We also describe an implicit
integration scheme for solving the level-set partial differential
equation. These improvements result in lower memory usage
and up to an order of magnitude improvement in speed over the
initial explicit, uniform-grid implementation of our method.

Additionally, our approach is flexible and supports variably
sized and anisotropic particles, with anisotropy defined either
by particle neighborhoods [47] or velocities. Most importantly,
our approach produces smooth, temporally coherent surfaces
while processing every frame independently. We demonstrate
our method on data generated by a variety of fluid simulation
techniques and simple particle systems (see Figure 14) 1.

1. A preliminary version of this article appeared in the proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion [5]. This extended version includes integration with the OpenVDB library
(see Section 3.4), implicit time integration (see Section 3.5), and obstacle
handling (see Section 3.6).
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2 RELATED WORK

The pioneering work of Blinn [6] introduced blobbies, also
known as metaballs, as a primitive for representing shapes.
This approach defines a scalar field that is the sum of three-
dimensional Gaussian kernels centered at a set of points.
Surfaces are then taken to be a particular iso-contour of
this scalar field. Blobbies tend to smooth regions of the
surface between several particles, making them preferable to
a union of spheres in many contexts. As the name implies,
this approach tends to produce “blobby,” or lumpy, surfaces.
In practice, smoothing techniques are often applied to these
surfaces in an attempt to remove the “blobbiness.” One of
the earliest attempts to skin animated particle systems [10]
rasterized blobbies onto a regular grid and applied surface
tension forces to smooth the surface.

Recent interest in the graphics community in particle-
based fluid simulations has sparked a renewed interest in
creating surfaces from particle sets. Müller and colleagues [22]
improved upon metaballs by dividing a particle’s contribution
to the scalar field by the SPH estimate of the density. Zhu
and Bridson [50] describe a quite different approach that
defines a distance to the surface at every point in space. This
distance is computed based on scattered data interpolation
of particle radii and a weighted average of the distance to
neighboring particles. While this approach produces very good
results early in the animation, without a way to update particle
radii, the results deteriorate over time. Shen and Shah [34]
use a similar approach and note temporal discontinuities,
which they address by blending adjacent frames. Adams
and colleagues [1] improved upon the results of Zhu and
Bridson [50] by recomputing the particle-to-surface distances
every timestep. Unfortunately, the changing distances make
surface generation a sequential process, ill-suited to treatment
as a parallel post-process. Moreover, both of these approaches
sometimes produce spurious surfaces in concavities. Solen-
thaler and colleagues [38] address this problem by prevent-
ing the generation of surface in regions where the average
neighbor position changes quickly. Museth and colleagues [26]
describe a very high-resolution particle surfacing pipeline that
incorporates a variety of post-processing techniques including
temporal and spatial anti-aliasing. More recently, Museth [24]
presented a particle skinning approach that applies of a variety
of simple and fast three-dimensional operators, such as dilation
and erosion filters, in the OpenVDB framework.

Perhaps, the first to cast the problem of generating surfaces
from particle data as a constrained optimization problem was
Williams [44]. We embrace this formulation, but diverge in
how the optimization is performed. Whereas they tessellate an
initial surface using a variation of marching cubes [21] and
perform mesh-based smoothing to optimize the surface, we
perform the optimization using a level-set approach. Mesh-
based smoothing methods are highly sensitive to mesh topol-
ogy and Williams’ marching tiles mesh extraction method
cannot guarantee that meshes adjacent in time have the same
topology. Consequently, some temporal incoherence is ex-
pected. By adopting a level-set framework, we can ensure that
the level-set mesh is identical for every frame allowing us to

preserve the temporal coherence in the particle data. We note
that Williams [44] suggested a level-set approach as future
work and that Sin and colleagues [37] briefly mention using
such a variation (actually, an early version of our code). This
paper details the approach and provides a variety of examples
and comparisons with alternative methods.

More recently, Yu and Turk [47] demonstrated very impres-
sive results for the particle skinning problem. Their approach
used a single pass of Laplacian smoothing of particle positions,
followed by defining a metaballs-like surface with anisotropic
smoothing kernels. The anisotropic kernels conform far better
to the surface defined by the particles than isotropic kernels.
Theirs is the first approach we know of that achieves appeal-
ing, smooth surfaces for each frame independently without
introducing any temporal artifacts. This paper only addresses
the surface smoothing aspect of the problem. Instead of
performing a single pass of Laplacian smoothing we minimize
the thin-plate energy using a level-set method. This approach
results in smoother surfaces than those of Yu and Turk [47]
(see Figure 12). Moreover, our approach can also make use of
anisotropic kernels (see Figure 11).

Our work is also related to the rich body of research
on surface smoothing, or fairing. Graphics researchers have
largely focused on smoothing surfaces with explicit, mesh-
based representations (see e.g., [8], [11], [18], [20], [32], [40]–
[43]). However, to avoid flickering artifacts from changing
mesh structure, we prefer a level-set approach. Level-set
methods are well known in computer graphics and vision
and have been used for a wide variety of problems from
virtual sculpting [2] to surface reconstruction [48] to liquid
surface tracking [15]. A principal use of level-set methods is
for surface smoothing. Early work examined motion by mean
curvature, which is closely related to Laplacian smoothing.
Chopp and Sethian [9] (see also [39]) examined motion by
intrinsic Laplacian of curvature and describe the numerical
difficulties they encounter. As such motion minimizes the
bending energy independent of the quality of the parameteri-
zation, we initially took this approach. However, we found that
the linear biharmonic operator gave as good results and was
numerically much more stable. Premoze and colleagues [30]
also seek a smooth surface that approximates particle data and
take a level-set approach. However, their approach initializes
the optimization for every frame with the surface from the
previous frame. Surface generation then becomes a sequential
process, ill-suited to parallel processing. For a treatment of
level-set methods in general see the texts by Sethian [33] and
Osher and Fedkiw [29].

Generating surfaces from animated particles can be cast
as a surface tracking problem and in this way is related to
the vast literature on surface tracking for the simulation of
liquids (e.g. [4], [14], [17], [23], [45], [46]). Most closely
related to our approach are the particle level-set methods [14],
[17]. Like our approach these methods combine tracked
particles with level-set methods. However, these approaches
allow bidirectional feedback between the particle and level-
set representations and are sequential in nature. In contrast, in
our approach the particles initialize the level set and provide
constraints, but are static during the smoothing iterations.
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3 METHOD

Our method comprises three steps. First, a volumetric grid
is initialized with signed-distance fields representing Smin,
Smax, and S0, the initial guess of the smooth surface. Second,
a constrained optimization smoothes the surface. Third, an
explicit representation of the surface is extracted and rendered.

For clarity of exposition, we first describe the method in the
simple context of a regular grid and explicit time integration
before describing integration with OpenVDB and implicit time
integration.

3.1 Level-set Initialization

We begin by initializing three scalar fields: φmin, φmax, and φ0.
φmin and φmax represent the two union-of-spheres constraint
surfaces, while φ0 is the starting point for the optimization
(see Section 3.2). The initialization of φmin and φmax is straight-
forward and involves a distance calculation to the nearest
particle and subtraction of rmin and rmax, respectively. More
formally,

φmin(i, j,k) = min
p
‖T(x(i, j,k)−x(p))‖− rmin

φmax(i, j,k) = min
p
‖T(x(i, j,k)−x(p))‖− rmax, (1)

where (i, j,k) refers to a grid point, and x(i, j,k) and x(p) are
the world-space positions of the grid point and the particle,
p. T is an optional transformation to allow for anisotropy.
We accomplish this initialization by performing a generalized
rasterization of the particles onto the level-set gridpoints. More
specifically, we initialize the level-set grid values to a large
positive background value. Then we iterate over the particles
and, for each grid point within some radius, set its value to
the minimum of its current value and the value determined by
the current particle.

Choosing the initial surface too near either constraint sur-
face can increase the number of smoothing iterations required.
While many values work well, we generally initialize φ0 as,

φ0(i, j,k) = 0.5(φmin(i, j,k)+φmax(i, j,k)) . (2)

After initialization, a fast sweeping method [49] is run to
ensure that φmin, φmax, and φ0 are signed-distance functions.
In all our examples, we apply a small number of iterations
(15) of Laplacian smoothing (φt = ∇2φ‖∇φ‖) to φ0. Like
Williams [44], we have found that this preprocessing reduces
the number of constrained optimization iterations required.

As is typical in level-set methods, our approach requires
that we maintain φ only in a narrow band around the surface.
In our implementation, φ is updated at all points within three
grid cells of the zero level-set. We store all values on six
regular grids (φ, φmin, φmax, and three grids for intermediate
computations) of doubles, leading to a memory cost of 48
bytes per grid-point. Thus, grids on the order of 2003 typically
fit in less than 0.5 GB, while 4003 requires more than 3 GB.
However, we note that the streaming nature of the smoothing
computations leads to near-optimal cache performance.

All our level-set grids can be thought of as being sub-
grids of an infinite background grid with grid-spacing h and
containing the origin (0,0,0). The fact that every frame uses

the same background grid is the key to maintaining the
temporal coherence of the particle data.

3.2 Constrained Optimization

We seek to minimize the thin-plate energy,

Ethinplate(φ) =
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The thin-plate energy is a linearization of the bending energy.
However, the thin-plate energy is not an intrinsic property of
the surface and penalizes the parameterization of the surface as
well as the shape of the surface. In practice, the muddying of
the parameterization and the shape is not a serious concern
as maintaining ‖∇φ‖ ≈ 1 is common practice in level-set
methods and, if φ is nearly a signed-distance field, Ethinplate,
like the various intrinsic bending energies, is at a minimum
for a sphere (see Figure 10). Moreover, the thin-plate energy
leads to a much simpler and numerically stable optimization
problem than intrinsic energy measures; see Chopp and Os-
her [9] for a discussion of the difficulties encountered when
solving for motion by the intrinsic Laplacian of curvature.
The variational derivative of Ethinplate is the biharmonic (or
bi-Laplacian) operator leading to the level-set equation,

φt =−∇4
φ‖∇φ‖=

− ( φxxxx +φyyyy +φzzzz + 2φxxyy +2φyyzz +2φzzxx)‖∇φ‖,
(4)

which we integrate through fictitious time by solving

φ
t+∆t = φ

t −∆t∇4
φ‖∇φ‖. (5)

The various high-order derivatives of φ in Equation (4) can be
straightforwardly discretized using two rounds of second-order
centered finite differences. We also use a second-order cen-
tered difference for the ‖∇φ‖ term. Constraints are enforced
after every smoothing iteration by taking

φ(i, j,k) = min(φmin(i, j,k),max(φmax(i, j,k),φ(i, j,k))). (6)

Periodically, a fast sweeping method ensures that φ is ap-
proximately a signed-distance function, preventing ‖∇φ‖ from
becoming near zero everywhere.

To avoid applying different degrees of smoothing to differ-
ent frames, which may lead to temporal incoherence, we do
not iterate until convergence. Instead, each frame is integrated
for the same total fictitious time by applying a fixed number of
smoothing passes. This approach does imply that the number
of smoothing passes is determined by the frame that requires
the most, but this restriction has not been problematic in
practice. In fact, as described in Section 3.7 we set the default
number of smoothing passes sufficiently large to handle all of
our examples.

Finally, we note that we do not have a proof that this simple
optimization algorithm necessarily converges to the minimum
thin-plate energy. However, this algorithm has always achieved
good results in practice.
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3.3 Surface Extraction

The final step in our approach is to extract the surface—
the zero-set of φ f inal . Our implementation applies marching
tetrahedra [7] using trilinear interpolation on the level-set grid.
Note that the extracted surface is only used for rendering and,
while it does introduce typical marching cubes artifacts, does
not introduce any temporal incoherence.

3.4 OpenVDB Integration

One limitation of the approach described thus far is the use
of regular grids when only a narrow-band is really necessary.
This limitation is especially problematic when the axis-aligned
bounding box used for the grid does not fit well with the
simulation domain. To address this issue, we have integrated
our technique into the OpenVDB framework [25]. As an
additional bonus, OpenVDB provides us with multi-threading
for free.

OpenVDB is an open-source C++ library designed for
storing and manipulating volumetric data. The library uses a
three-level B-tree to provide fast random access while also
supporting sequential access operators similar to the DT-
Grid [27]. Data is stored in buffers and a given B-tree has
a single read-buffer, but may have an arbitrary number of
auxiliary buffers. Random access, which is required to lookup
neighboring values when using finite differencing stencils, is
only supported for the read buffer. However, auxiliary buffers
may be quickly swapped with the read buffer by changing
pointers. Individual grid cells may be labeled on and off. Cells
labeled off can be quickly skipped when performing narrow
band operations.

We use a total of five auxiliary buffers in our implementa-
tion. Four are used to store the constraint surfaces φmin and
φmax, the Laplacian ∇2φ, and the magnitude of the gradient
‖∇φ‖. A fifth buffer is used to store the result of intermediate
computations (updated φ values). During the initial Laplacian
smoothing we only use three of these buffers (∇2φ and
‖∇φ‖ are not required). Fast sweeping also uses the fifth
auxiliary buffer for updated φ values. Pseudo-code is given
in Algorithm 1.

Initialization: As with the full regular grid, we must
initialize fields for φmin, φmax, and φ0, which is accomplished
using OpenVDB’s particle rasterization routines. The con-
straint surfaces are placed in auxiliary buffers and φ0 is placed
in the read buffer. With a regular grid we only need to specify
the bounding box of the grid. In contrast, with OpenVDB, we
must additionally specify the width of the tree at initialization.
Here, “width” is not the branching factor of the tree, but rather,
how wide a band we wish to have around the zero level-
set—OpenVDB will not allocate grid-points outside this width.
Furthermore, we can not set this width to be the same as the
traditional narrow band parameter, but rather, we must choose
the maximum distance from the initial surface that we would
ever require a level-set value. We wish to maintain the level
set within a narrow-band of three cells and the biharmonic
operator requires values two cells away. Moreover the surface
may move to either constraint during optimization, thus we

Algorithm 1 OpenVDB Implementation
1: Initialize OpenVDB data structures
2: Rasterize particles onto the grid
3: Compute φmin and φmax and store them in buffers
4: Perform fast sweeping on φ0, φmin and φmax
5: while (i < l_max_iter) do
6: Activate cells in narrow band of width 4h
7: Constrained Laplacian Update
8: Swap(φt+∆t , read)
9: end while

10: while (i < b_max_iter) do
11: Activate cells in narrow band of width 4h
12: Compute Laplacian
13: Swap(Laplacian, read)
14: Activate cells in narrow band of width 3h
15: Constrained Biharmonic Update
16: Swap(φt+∆t , read)
17: if ((i % 50) == 0) then
18: Perform fast sweeping
19: end if
20: end while
21: Extract zero isosurface of φ using marching cubes

may require values as far from the initial surface as

5+
⌈

max
(

rmax− rinit

h
,

rinit − rmin

h

)⌉
. (7)

As before we perform fast sweeping to ensure that φmin, φmax,
and φ0 are distance fields.

Optimization: Each iteration of biharmonic smoothing
involves six steps. First, we activate cells in the narrow band
of width 4h by setting them on. Second, we compute the
Laplacian of φ and store it in an auxiliary buffer. Third, we
swap this auxiliary buffer with the read buffer. Fourth, we
activate cells in a narrow band of width 3h. Fifth, we compute
the biharmonic operator and apply the update (including
applying constraints), storing the result, φt+∆t , in an auxiliary
buffer. Finally, we swap this auxiliary buffer with the read
buffer. The magnitude of the gradient is computed at the
same time as the Laplacian—when φ is in the read buffer.
For Laplacian smoothing, we skip one of the swaps and need
not store the Laplacian or magnitude of the gradient. Note that,
as before, the narrow band where we are actually performing
computation may shift during optimization.

Surface Extraction: Conveniently, OpenVDB includes an
implementation of dual contouring [19] that we use to extract
the zero iso-surface of φ f inal .

Redistancing: As before, we perform redistancing at
initialization and periodically during smoothing. We do so
using a fast sweeping method [49]. Values are initialized and
fixed at vertices next to the interface—these values are turned
off during fast sweeping iterations, all others are turned on.
Then several passes are made sequentially over the grid and
level-set values at vertices that are turned on are updated using
neighbors that are closer to the interface. After each pass, the
auxiliary buffer containing updated level-set values is swapped
with the read buffer.
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There are two differences between this algorithm and the
one originally proposed by Zhao [49]. First, instead of sweep-
ing over the grid in different orderings, we traverse the grid
in parallel in the order determined by OpenVDB’s sequential
access routines. Second, to avoid race conditions, we use
Jacobi rather than Guass-Seidel iterations. These modifications
likely result in slower convergence, but allow for parallel
computation and leverage OpenVDB’s fast sequential access
routines. Note that, it is not critical that we maintain a
highly accurate signed-distance function. In practice, we have
found that occasionally running eight Jacobi iterations of
this approximate algorithm sufficiently maintains the signed
distance property in the narrow band.

3.5 Time Integration

We have also explored two improved time integration strate-
gies: adaptive timesteps and implicit integration.

Adaptive Timestepping: The Courant-Freidrichs-Lewy
(CFL) condition states that information should travel no more
than one grid-cell in a single timestep. Thus we can compute
the largest allowable timestep, ∆tmax, as

∆tmax =
h

vmax
, (8)

where h is the grid spacing and vmax is the maximum speed of
the level-set function (i.e. max(∇4φ‖∇φ‖)). While we found
this approach to be stable, varying the timestep unfortunately
introduces flickering in the resulting animations. An example
using adaptive timestepping is included in the accompanying
video. We note that, although the adaptive timestepping is not
effective for generating animations, the approach could be used
to warn a user if too large a fixed timestep was being used.

Implicit Integration: An alternative approach to avoiding
timestep restrictions is implicit time integration [3], [11]. To
do so we must solve

φ
t+∆t = φ

t −∆t∇4
φ

t+∆t‖∇φ
t+∆t‖. (9)

The non-linear ‖∇φt+∆t‖ term is problematic, but since we
maintain a signed distance function through periodic redis-
tancing we assume that ‖∇φt+∆t‖ = 1 and drop it from the
system. Combining terms we arrive at the linear system

(I+∆t∇4)φt+∆t = φ
t . (10)

Because ∇4 is a positive semi-definite operator, the system
in Equation (10) is positive definite and can be solved using
conjugate gradients [35]. However, there are two wrinkles to
solving the constrained optimization problem. First, we must
take some care in handling boundary conditions. Second, we
must incorporate the inequality constraints in Equation (6).
Please see the appendix for a simple didactic example.

Our solution strategy is inspired by the active set methods
frequently used to solve linear complementarity problems (see,
e.g. the book by Dostl [12]). Essentially, we repeatedly attempt
to solve the linear system in Equation (10), but whenever
a constraint is violated, we abort the solve and modify the
system and boundary conditions. Specifically, we designate
each cell as free or constrained. We initially designate all

cells in a band from 3h− 5h as constrained to their current
φ values; these cells form our initial boundary conditions. We
initialize the right hand side by applying our operator to these
constrained cells. We then attempt to solve our linear system
using conjugate gradients. If during the solve a constraint
is violated in the solution vector x, we move the violating
cell to the constrained set, constrain its value, recompute
the right hand side, and restart conjugate gradients. While φ

is redistanced and the constrained set is re-initialized every
timestep, we note that we do not allow cells to go from the
constrained set to the free set during a single timestep. This
restriction simplifies the implementation and should speed
convergence, but also intuitively means that once the surface
hits one of the constraints it “sticks” to the constraint for the
remainder of the timestep. While there may be circumstances
under which cells should move from the constrained set back
to the free set, we believe such situations are rare. At any rate,
we did not observe any artifacts from this restriction, perhaps
because of the re-initialization that occurs for each timestep.

More specifically, as before we maintain level-set values in
a band of 3h around the zero level-set and treat the values in
the range of 3h-5h as boundary conditions. Thus, we initially
mark all cells in a narrow-band of 3h as free cells and cells in
the range of 3h-5h are marked constrained. We initialize our
solution vector to φt and compute the initial residual as

r = φ
t − (I+∆t∇4)φt . (11)

The residual and other conjugate gradients variables are only
valid at the free grid cells. Consequently, conjugate gradient
operations (e.g. dot products) are computed using only values
at these cells by activating them and turning all other cells off.
As mentioned above, after each conjugate gradient iteration,
we enforce the constraints. If any constraints are violated, the
violating cells are marked constrained and conjugate gradients
is restarted with the current solution and the new right hand
side. The residual is re-computed by applying our operator
to the current solution in free cells and the constrained
values/boundary conditions at constrained grid cells. We still
break our time integration into several (e.g. 5) timesteps to
allow for periodic redistancing. The method is summarized in
Algorithm 2.

The OpenVDB library does not include an implementation
of conjugate gradients, but the algorithm is straightforward to
implement in the OpenVDB framework. The method requires
the storage of five vectors: the (current) solution (x), the resid-
ual (r), the (conjugate) search direction (d), a flag determining
whether a cell is free or constrained (c), and a temporary
vector that stores the linear operator applied to the search
direction (q=Ad). We store each of these in auxiliary buffers.
In addition to applying the linear operator in Equation (10) the
method requires several basic linear algebra operations: dot
products, vector scaling, and vector addition. The dot products
use PARALLEL_REDUCE calls while the other operations
allow PARALLEL_FOR calls. These linear algebra operations
account for roughly 20% of total runtime (see “CG Overhead”
in Tables 1 and 3 and Figure 19).

A couple of minor notes are in order. First, care must
be taken when activating cells. We must always apply our
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Algorithm 2 Implicit Time Integration
1: for (i = 0) to (i = ntimesteps) do
2: Copy φ to auxiliary buffer in band of 5h
3: Initialize x = φ in band of 5h
4: while (constraints violated) do
5: Initialize r = φ−Ax in band of 3h, 0 elsewhere
6: Initialize d = r in band of 3h, 0 elsewhere
7: δnew = rT r
8: if (i == 0) then
9: tol = ε2δnew

10: end if
11: while (true) do
12: Swap(d, read)
13: Apply operator (q = Ad)
14: Activate free cells
15: α = δnew/(dT q)
16: x = x+αd
17: r = r−αq
18: Apply constraints, mark constrained cells
19: if (constraints violated) then
20: break;
21: end if
22: δold = δnew
23: δnew = rT r
24: β = δnew/δold
25: d = r+βd
26: if (δnew < ε2δ0) || (δnew < tol) then
27: break;
28: end if
29: end while
30: if (δnew < ε2δ0) || (δnew < tol) then
31: break;
32: end if
33: end while
34: read = x in band of 3h
35: if ((i % redistanceFrequency) == 0) then
36: Perform fast sweeping
37: end if
38: end for

operator to values in a band of width 5h, but it is important
that all the conjugate gradient calculations apply only to the
free cells. For example, the residual should be computed only
at free cells and should be treated as zero at constrained
cells. Second, during application of the operator, we must
first swap the read buffer (containing d) with the auxiliary
buffer allocated for d, before swapping the read buffer with
the newly computed Laplacian (between lines 12 and 13 in
Algorithm 1). Finally, all of the linear algebra operations use
sequential access and, therefore, do not require any swapping
with the read buffer. That is, the auxiliary buffers for x, r,
etc. are accessed directly. The read buffer is only required for
applying the finite difference stencils in the linear operator.

3.6 Obstacle handling

Nearly all particle animations involve interactions with ob-
stacles. While a simulation may ensure that particles do

not penetrate obstacles, the skinned animation may not pre-
serve this property. Additionally, the skinning process may
introduce small voids between the the surface and obstacles
(see Figure 2). Fortunately, level-set methods are excellent for
performing Boolean operations and addressing these artifacts
is straightforward. For any obstacles, we can build a level set,
φo. Then, to address intersections, we introduce an additional
constraint,

φ(i, j,k) = max(φ(i, j,k),−φo(i, j,k)). (12)

Dealing with voids is slightly trickier. In this case, we
must choose a threshold for the size of a void we wish to
remove. Choosing too large a threshold will result in temporal
incoherence when the threshold is suddenly satisfied. Too
small a threshold will leave small voids in place. At any rate,
if a point is outside both the surface and the obstacle, but the
sum of the level-set values is small, we wish to replace φ with
−φo. Specifically,

if φ(i, j,k)> 0 and φo(i, j,k)> 0 and
φ(i, j,k)+φo(i, j,k)< ε then

φ(i, j,k) =−φo(i, j,k)
end if

These constraints are handled in the same manner as the union-
of-spheres constraints.

3.7 Parameters

At first it may seem that there are many parameters to
our approach: rmin, rmax, the number of smoothing passes,
frequency of fast sweeping, timestep, and grid spacing. While
hand-tuning these parameters can produce slightly improved
results and reduce running times, good default values can be
obtained by requiring the user to specify only the grid-spacing,
h, which is related to the inter-particle spacing and the desired
level of detail in the resulting surfaces. The grid spacing can
be quickly found by viewing φ0 and ensuring that there is the
desired amount of overlap between particles. Given h, we set

rmin =
√

3h. (13)

This choice guarantees that every particle rasterizes to eight
grid cells and ensures that the particle is well represented.
The ratio between rmin and rmax provides a tradeoff between
surface smoothness and faithfulness to the underlying particles

Fig. 2. Depending on the details of the underlying simulation’s
handling of particle-obstacle interactions, there may be voids
(blue) and/or intersections (orange/brown) between our surface
and the obstacle geometry.
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(see Figure 3). Larger ratios generate smoother surfaces, while
smaller ratios more faithfully represent the particles. We have
found that a ratio of 2 works well for many examples.

For the explicit time integration scheme, we default to 500
passes of biharmonic smoothing with fast sweeping performed
every 50 passes. The timestep defaults to

∆t = 0.01h4, (14)

though this relation is not perfect and we anticipate that some
examples will require a smaller timestep. Implicit integration
admits a larger timestep; we use

∆t = 20h4 (15)

in our examples. As mentioned above we still take several
timesteps, 5 in our examples, to allow for redistancing. Note
that this results in longer integration times, and smoother
surfaces, than the default settings for explicit integration. We
found that even larger timesteps remained stable and did
not lead to artifacts. But these longer timesteps did require
more conjugate gradient iterations and hence longer runtimes
without producing significantly better results. We found that
this timestep achieved a good balance, but we did not perform
exhaustive experiments. We further note that there is a rela-
tionship between integration time and the ratio, rmax/rmin. In
short, longer integration times require smaller ratios to remain
faithful and avoid temporal artifacts, while shorter integration
times require larger ratios to achieve smoothness. The implicit
integration scheme uses three additional parameters: relative
and absolute thresholds for convergence of conjugate gradients
and a cap on the number of conjugate gradient iterations. We
use default values of 1e-4, 1e-6, and 1500 respectively. All the
examples in Figure 14 are generated using these parameters.

4 RESULTS AND DISCUSSION

We have four implementations of our particle skinning
method: BasicExplicit, which uses regular grids and explicit
integration; BasicImplicit, which uses regular grids and im-
plicit integration; OpenVDBExplicit, which uses explicit inte-
gration within the OpenVDB framework; and OpenVDBIm-
plicit, which employs implicit integration within the Open-
VDB framework. We have tested all four implementations
with data from a variety of particle-based animation systems
and several analytical tests. All the images demonstrating our
method in this paper were generated using OpenVDBImplicit
unless otherwise noted. In the accompanying video, we pro-
vide animations of these, and additional, results as well as
comparisons between the different implementations. These
examples demonstrate that our method generates temporally

Fig. 3. The effect of changing the ratio, rmax/rmin, from left to
right, 1, 1.25, 1.5, 2, and 4.

Fig. 4. The “Enright” test [13]. The leftmost image is a very
low resolution example (500 particles); the middle image has
an intermediate resolution (5000 particles); and the rightmost
example has higher resolution (50,000 particles). With very
coarse particles sets, the underlying discretization becomes
apparent, but as the videos demonstrate, our technique main-
tains temporal coherence. The underlying analytic velocity field
results in a non-uniform particle sampling that can be observed
in the rightmost image. Of course, relaxing the faithfulness
criterion will result in a smoother surface. To avoid marching
cubes artifacts the low and intermediate resolution examples
used the same grid spacing (but different rmin and rmax) as the
higher resolution example.

Fig. 5. Laplacian smoothing (left) shrinks the sphere until
it starts interacting with the constraints, while our biharmonic
smoothing (right) converges to a sphere.

coherent, smooth surfaces while preserving much of the rich-
ness of the underlying particle motion. In this section, we
first discuss the versatility of our method across a range of
examples before shifting to performance analysis.

4.1 Examples

Figure 4 shows the result of the “Enright” test [13]. In this
example, we have tested our method with different resolutions
to show that even for very coarse particle sets and grids,
temporal coherence is maintained. The supplementary material
also shows a Zalesak notched sphere example, which also
does not flicker. We note that in these tests the particles
are passively advected through the analytic flow field and,
consequently, we would not expect to see the same sort of
distortions commonly found in other surface tracking methods.

In Figure 5, we show the advantage of biharmonic smooth-
ing over the simpler Laplacian smoothing that is commonly
employed. At first Laplacian smoothing quickly smoothes the
surface, but additional iterations shrink the surface such that
it starts interacting with the constraints. Volume correction
techniques [11] could be employed to address the shrinkage,
but these techniques lead to other artifacts (e.g. volume moving
from one region of the fluid to another). Alternatively, a limited
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Fig. 6. The surface after (from left to right) 0, 2000, 4000, 6000, 8000 and 10000 timesteps using OpenVDBExplicit.

Fig. 7. The surface after (from left to right) 0, 1, 2, 3, 4 and 5 timesteps using OpenVDBImplicit.
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Fig. 8. Bending energy as a function of integration time for
both OpenVDBExplicit (see Figure 6) and OpenVDBImplicit
(see Figure 7). This graph indicates that the thin-plate energy
is a good proxy for bending energy and that the two approaches
have very similar behavior.

number of smoothing passes could be applied, however it
is difficult to know, a priori, how many passes to apply.
Biharmonic smoothing, on the other hand, converges to a
sphere without shrinking the surface and applying additional
smoothing passes produces no ill effects. Figures 6 and 7
show the results after various numbers of explicit and implicit
timesteps, respectively, and Figures 8 and 9 show the bending
energy (measured as the integral of mean curvature over
the output polygonal surface) as a function of timestep and
computation time. In particular, Figure 9 demonstrates the
computational superiority of our implicit integration scheme.

We also demonstrate one of the primary limitations of
our approach in Figure 10. For the example on the left,
we created a scalar field that is a signed distance function
for x > 0, but is a function that rapidly increases away
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Fig. 9. Bending energy as a function of computation time (in
seconds) for both OpenVDBExplicit (see Figure 6) OpenVDBIm-
plicit (see Figure 7). Implicit integration performs substantially
better.

Fig. 10. When φ is not a signed-distance function (left), smooth-
ing fails. With a signed distance function (right), biharmonic
smoothing converges nicely.

from the surface for x < 0. While smoothing by the intrinsic
Laplacian of curvature [9] could theoretically handle this case
because such motion is independent of the parameterization,
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Fig. 11. From left: a rendering of the particles inside the generated surface, isotropic constraints, neighbor-based anisotropy and
velocity-based anisotropy. All surfaces in this figure were generated using the BasicExplicit implementation.

Fig. 12. A comparison with the method of Yu and Turk [47]. A
sphere is sampled (uniformly at random) with particles and given
as input. Our approach (left) nearly recreates the sphere with
50,000 particles. The method of Yu and Turk [47], produces a
fairly lumpy surface at 50,000 particles (center), but does much
better with 1,000,000 particles (right), though some lumpiness
is still present. These results imply that our approach may
be especially well-suited for low particle counts. The leftmost
surface was generated using the BasicExplicit implementation.

the bad parameterization interferes with our linear operator
and causes the smoothing to fail. Fortunately, this limitation
can be addressed by occasionally applying a fast sweeping
method to re-establish the signed-distance property. Another
limitation, not so easily addressed, is that our method has
difficulty generating very thin surfaces, even at high grid-
resolutions. While for a mesh-based approach, the topology
of the surface is fixed before smoothing begins, in a level-
set approach the topology is free to change throughout the
smoothing process. Thus, with our approach if rmin is set small
enough that spheres centered at the particles do not overlap, the
surface can break apart. With a mesh-based approach if pieces
of surface are initially connected, they may get arbitrarily thin
without breaking apart.

We also provide comparisons with previous approaches in
the accompanying video. In particular, we compare with the
method of Adams and colleagues [1] in the falling armadillo
example; and with the mesh-based method of Williams [44] in
the example with the smiley face board. In both these cases it
is clear that our approach maintains better temporal coherence.
In Figure 12, we show a comparison with the method of Yu
and Turk [47]. Our surface is quite smooth at modest particle
counts, while theirs retains some lumpy features even with
many more particles. An additional comparison with their
double dam break is included in the supplementary material.
Note that the double dam break uses the BasicExplicit imple-

Fig. 13. A comparison of Adams et al [1] approach (left) with
ours (right) on an example with variably sized particles.

mentation.
In Figure 13, we demonstrate our method’s ability to handle

variably sized particles. In this case rmin and rmax vary per
particle and are a function of both the particle “radius” given
by the simulator and the level-set grid-spacing. In Figure 11,
we demonstrate our method’s ability to handle anisotropic
particles. The anisotropy can be determined either using a
particle’s local neighborhood as in Yu and Turk [47] or using
velocity stretching where T in Equation (1) is given by

T =
(

v t0 t1
) 1

(1+s)2 0 0
0 1+ s 0
0 0 1+ s

 v
t0
t1

 ,

(16)
where v is the normalized particle velocity, t0 and t1 are
orthogonal to v and to each other, and s is the particle’s
(scaled) speed. This transformation has the effect of reducing
distances in the velocity direction (and increasing distances
in directions tangent to the velocity), thereby stretching par-
ticles in the direction of movement. These two approaches
to anisotropy achieve different artistic effects and we do not
advocate one over the other. Note that the warping induced by
T in Equation (1) occurs before redistancing ensures that the
various scalar fields are signed distance functions. In this way,
our contribution is complementary to the anisotropic kernels
advocated by Yu and Turk [47].

To demonstrate our obstacle handling, we sample the sur-
face of a tetrahedron with particles and apply our approach
(see Figure 15). The surface mesh of the tetrahedron is
converted to a level set, φo, and treated as an obstacle as we
apply intersection and void removal. Interestingly, intersection
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Fig. 14. We have applied our particle skinning technique to data from a variety of particle simulation systems. From left to right:
A fluid-implicit particle (FLIP) simulation [50] (217K particles, grid resolution = 693×93×130), a simulation using the method of
Sin et al. [37] (38K particles, grid resolution = 219×212×305), a smoothed particle hydrodynamics simulation [1] (52K particles,
grid resolution = 237× 235× 220), and an elasto-plastic smoothed particle hydrodynamics simulation [16] (40K particles, grid
resolution = 174×110×215).

Fig. 15. This figure demonstrates our obstacle handling. Top-
left: the surface of a tetrahedron is sampled with particles. Top-
right: constrained biharmonic smoothing, no obstacle handling.
Bottom-left: constrained biharmonic smoothing with intersection
removal. Bottom-right: constrained biharmonic smoothing with
intersection and void removal. All surfaces in this figure were
generated using the BasicExplicit implementation.

Fig. 16. The result of applying our obstacle handling to simu-
lation data. Left: no obstacle handling. Right: intersection and
void removal. All surfaces in this figure were generated using
the BasicExplicit implementation.

Example Left Center-Left Center-Right Right
BasicExplicit

Total Time 2339.1 2319.6 2504.7 946.2
Rasterization 11.5 1.5 3.7 0.3
Fastsweeping 18.4 24.6 35.8 10.2
Apply Operator 1486.1 1430.2 1491.5 542.9
Compute ‖∇φ‖ 468.7 466.2 497.4 203.6

Memory in GB 0.79 0.53 0.7 0.32
OpenVDBImplicit

Total Time 79.5 74.9 72.8 14.5
Rasterization 11.9 0.7 2.7 0.8
Fastsweeping 3.4 1.5 1.9 1.1
Apply Operator 30.9 37.6 33.1 6.1
CG overhead 17.2 18.9 18.8 2.9
Activate 13.7 13.4 13.2 3
Apply Constraints 2.1 2.3 2.3 0.5

Memory in GB 0.82 0.26 0.46 0.18
CG iterations 969 1940 1301 758
CPU Usage 1113 1158 1124 1110

TABLE 1
Performance statistics for the examples in Figure 14 with

BasicExplicit and OpenVDBImplicit implementations. Timings
are given in seconds. CG Overhead refers to the various linear
algebra operations involved in conjugate gradients and Activate

refers to activating/deactivating cells.

removal alone introduces artifacts that are more objectionable
than performing no obstacle handling. However, with both
intersection and void removal the surface is nice and sharp.
In Figure 16 we show the result of applying our obstacle
handling to simulation data.

4.2 Performance Analysis

Now, we shift our attention to performance analysis of our
particle skinning method, using the animation examples in Fig-
ure 14 and the simple static examples in Figure 17. All
statistics were recorded on a Ubuntu 14.04 linux server with
dual Intel Xeon X5650 6-core processors (12 cores total)
running at 2.8 GHz and 48 GB of memory. All reported
running times except those in Table 2 ignore file I/O.

In Table 1 we compare timing results for the BasicEx-
plict and OpenVDBImplicit implementations for the examples
in Figure 14. All statistics are averages over the frames in the
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Fig. 17. Our algorithm is applied to synthetic particle sets
that approximate a dragon model. Particles were sampled from
regular grids and rejected if they fell outside the model. The grid
resolutions varied in a geometric progression from 0.8 (upper-
left) to 0.1 (lower-right). See Table 3 for performance statistics.

accompanying animations. These examples were generated us-
ing 15 Laplacian smoothing passes followed by 10000 explicit
timesteps or 5 implicit timesteps. Letting n be the number of
timesteps, the size of the timesteps, ∆t, was chosen so that
the total integration time, T = n∆t, was the same regardless of
the integration scheme. Implicit integration and parallelization
with OpenVDB clearly pay off, resulting in more than an order
of magnitude better performance. Also note that with 12 cores
available the CPU usage is between 1110% and 1158%, which
indicates good resource usage. Except for one example, which
is well approximated by an axis-aligned bounding box, we
also see significant improvements in memory usage with the
OpenVDB implementation.

We also examined how well our algorithm and its various
steps parallelize and scale. To do so, we created synthetic
particle sets at various resolutions that represent the dragon
model in Figure 17. The particle sets where created by sam-
pling from a regular grid and including samples that fall inside
the model while rejecting exterior samples. We then applied
our algorithm while varying the number of threads available to
OpenVDB. Figure 18 shows the total time required to generate
the surface in Figure 17 (upper-right) as the number of threads
increases. The baseline (in green) corresponds to OpenVDB’s
automatic thread management. Figure 19 gives a breakdown
of the various steps of our algorithm. Clearly we extract the
most parallelism from the application of our operator, but even
here the returns quickly diminish.

We also compare to more naïve parallelism, where a number
of separate jobs are run at once. To do so, we ran a “large
workload” consisting of 120 total jobs and vary the number
of jobs running simultaneously and the number of threads
allocated to each job such that 12 threads are always running.
The results are shown in Table 2. Somewhat surprisingly,
running 12 jobs at once with 1 thread each achieved the fastest
result. While we did observe a slight slowdown when running
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Fig. 18. Total time to generate the surface in Figure 17 (upper-
right) while varying the number threads.
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Fig. 19. Breakdown of the various components of our algorithm
for Figure 18.

# processes # threads per process Total Time
12 1 03:32
6 2 03:36
4 3 03:44
3 4 03:51
2 6 04:09
1 12 04:43

TABLE 2
Time (in hh:mm) to compute the surface in Figure 17

(upper-right) a total of 12 times while varying the number of
simultaneous processes and number of threads per process.

12 single-threaded jobs compared to one single-threaded job,
it seems there was only minor contention for the cache. There
is a notable jump between 2 and 1 simultaneous jobs, probably
due to the higher cost of communication between processors
than between cores on the same processor. Of course, very
large jobs, such as the surface in Figure 17 (lower-right),
are constrained by the total memory available—at high grid
resolutions it is not possible to run a large number of jobs.

To understand how our algorithm scales, we present perfor-
mance statistics for the four examples in Figure 17 in Table 3.
Our approach scales well. For each 23 increase in grid reso-
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Grid Spacing (h) 0.8 0.4 0.2 0.1
Total Time 25.5 141.2 971.2 6450.2

Rasterization 3.7 25.3 196.1 1551.9
Fastsweeping 1.8 4.6 22.9 147.9
Apply Operator 9.1 46.3 309.7 1641.9
CG overhead 5.5 36.3 256.1 1838.7
Activate 5.24 24.5 160.1 1133.1
Apply Constraints 0.9 4.1 22.2 115.1

Number of particles 603 K 4.82 M 38.6 M 309 M
Memory in GB 0.35 1.1 4.4 28
CG iterations 938 1181 1965 2144
CPU usage 1089 1125 1138 1135

TABLE 3
Performance statistics for the examples in Figure 17 with

varying resolution. Timings are given in seconds. We use the
same naming conventions as in Table 1.

lution, the running time increases by a factor of between 5.5
and 7. The largest increase in running time occurs between
columns 2 and 3, which also corresponds to a dramatic jump in
the number of conjugate gradient iterations—likely indicating
more interaction with the constraint surfaces. Note that this
sublinear scaling is expected because some operations, like
rasterization, vary with volume (i.e. n3); others, like the level-
set operations, varying more more closely with the surface
area (i.e. n2). A graph of the “speedup” due to parallelization,
measured as the ratio of sequential execution to parallel exe-
cution, is shown in Figure 20. The speedup remains relatively
constant across grid-resolutions, with slightly higher speedups
achieved at higher resolutions.
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Fig. 20. Speedup, computed as ratio of sequential runtime
to parallel runtime, as grid spacing decreases. The speedup
remains relatively constant across grid-resolutions, with slightly
higher speedups achieved at higher resolutions.

We have presented a method for skinning particle anima-
tions that processes each frame independently and maintains
the temporal coherence of the particle data. Our method is
fast and easy to implement, integrates easily with Open-
VDB, admits implicit integration, can handle boundaries and
anisotropic or variable-sized particles, and generates appeal-
ing, smooth surfaces. We fully expect our method to find its
way into many production toolboxes where it will complement
the vast array of particle skinning tools currently available.
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APPENDIX

In this appendix we examine a simple didactic constrained
optimization problem with boundary conditions. Consider the

system

(
−1 2 −1 0
0 −1 2 −1

)
1
x
y
7

= 0, (17)

where x and y are unknowns and 1 and 7 are boundary
conditions. Clearly the solution is x = 3 and y = 5. The
equivalent square system is(

2 −1
−1 2

)(
x
y

)
=

(
1
7

)
(18)

Thus the right-hand side can be computed by applying the non-
square operator to the boundary conditions and multiplying by
−1.

Now, let us assume that y is constrained to be less than or
equal to 4. In this case, when y exceeds 4 during the solve
we must apply this constraint. Doing so results in the smaller
system

(2)(x) = (5) (19)

as the constrained value at y is now treated in the same way
as the boundary conditions.
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