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Abstract

In this paper, we present a method for fluid simulation on unstruc-
tured quadrilateral surface meshes. We solve the Navier-Stokes
equations by performing the traditional steps of fluid simulation,
semi-Lagrangian advection and pressure projection, directly on the
surface. We include level-set based front-tracking for visualizing
“liquids,” while we use densities to visualize “smoke.” We demon-
strate our method on a variety of meshes and create an assortment
of visual effects.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation.

Keywords: Fluid simulation, quadrilateral meshes, physics-based
animation.

1 Introduction

Fluid simulation has been one of the greatest successes of physics-
based animation, generating hundreds of research papers and a
great many special effects. This paper studies fluid simulation on
two-manifolds embedded in three-dimensional space, a problem
that has received relatively little attention from the computer ani-
mation community. While perhaps somewhat esoteric, such sim-
ulations produce compelling visual effects and are a good model
of “sand pictures” and other instances of fluid-like materials sand-
wiched between plates of glass, which are common decorations in
homes and offices.

In contrast to previous work, which performed fluid simulations on
triangle meshes [Shi and Yu 2004] or highly structured subdivision
surfaces [Stam 2003], this paper seeks to perform fluid simulation
on arbitrary, unstructured quadrilateral surface meshes. To do so,
we adapt the traditional advection and pressure projection steps to
be performed directly on the surface. Unlike the regular grids typ-
ically used in three-dimensional fluid simulation, on unstructured
meshes there is no inherent global parameterization. Instead, we
parameterize each quadrilateral individually and convert data be-
tween parameterizations as it flows along the surface. We also pro-
vide two visualization techniques to visualize our surface flows: a
level-set interface tracking method for immiscible fluids and den-
sity advection for miscible fluids or smoke.

Quadrilateral meshes offer some advantages over the more common
triangle meshes. Quad meshes require fewer elements to achieve
similar approximation power [Cifuentes and Kalbag 1992; Shep-
herd and Johnson 2008]. Moreover, quad meshes achieve reduced
approximation error when the approximated function is not con-
vex [D’Azevedo 2000]. Most importantly, however, quadrilaterals
can align with geometric features and anisotropies without neces-
sarily degrading the quality of individual elements.
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The cost of these advantages is that computing quadrilateral meshes
is generally more difficult. Recently, however, the computer graph-
ics community has invested much effort and made much progress
in techniques for high quality quadrangulations of surfaces, with
research both in mesh generation and mesh improvement tech-
niques. Bommes et al. [2012] discuss the state-of-the-art for quad
meshes. To leverage these developments and exploit the advantages
of quadrilateral meshes, we present a method to simulate fluid on
arbitrary, unstructured quadrilateral surface meshes, with or with-
out boundary. Our method is entirely generic and can be applied
to any quadrilateral mesh, independent of how the mesh was gener-
ated.

2 Related Work

Fluid simulation has been well studied across the fields of science
since the invention of computers. In computer graphics, Foster and
Metaxas [1996] performed the first fully three-dimensional fluid
simulations. Timestep restrictions led Stam [1999] to advocate the
Stable Fluids approach. However, the semi-Lagrangian advection
scheme leads to significant numerical damping, which led Fedkiw
and colleagues [2001] to introduce vorticity confinement. Since
that time, hundreds of fluid simulation papers have been published
and a complete review is beyond the scope of this paper.

Fluid simulation on surface meshes is a topic that has received rel-
atively little attention. Stam [2003] was the first to model fluid flow
on surface meshes. He used Catmull-Clark subdivision [Catmull
and Clark 1978] to model surface geometry and took advantage of
the natural cubic B-spline parameterization of individual surface
patches. He then solved the Navier-Stokes equations in curvilinear
coordinates in each patch, with special handling of patch bound-
aries. Our goal is to simulate on unstructured quadrilateral meshes,
without being limited to Catmull-Clark surfaces.

Shi and Yu [2004] presented a novel technique to simulate inviscid
incompressible fluids on triangular meshes. They perform simu-
lation directly on the triangular mesh, avoiding parameterization
distortion, and produced compelling results. Like them we seek to
simulate directly on the mesh, but we target quadrilateral meshes
rather than triangle meshes.

Recently, Hegeman and colleagues [2009] modeled fluid flow on
surfaces parametrized using conformal (i.e angle preserving) geo-
metric structures. Their GPU-based implementation was able to
achieve impressive frame rates. However, they were limited to
genus zero surfaces. Researchers have also considered the related
problems of water drops flowing on surfaces [Wang et al. 2005;
Zhang et al. 2012] and solving the shallow water equations on sur-
faces [Wang et al. 2007].

Our method generalizes the steps of fluid simulation to unstruc-
tured quadrilateral surface meshes. Quadrilateral mesh generation
is an active area of research both in computer graphics and compu-
tational science [Alliez et al. 2005; Bommes et al. 2012]. Convert-
ing from unstructured data requires some effort. For example, in the
simplest case, if a given mesh is triangular, Catmull-Clark subdivi-
sion or triangle pairing [Gurung et al. 2011; Tarini et al. 2010] could
be used to trivially remesh to quadrilateral elements. However, in
practice such meshes created with these techniques rarely are desir-
able for simulation because they can generate high numbers of ex-
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traordinary vertices (those having valence other than four) as well
as elements with poor alignment and quality. In the former situa-
tion, extraordinary vertices require special case numerics, reducing
the simplicity (and sometimes the efficiency). The latter situation is
more difficult, as poorly shaped elements can have small volumes,
or worse be non-convex, leading to subsequent bad numerical sta-
bility in the simulation.

To address these concerns, more advanced techniques for quadri-
lateral meshing have been proposed in the past few years. These
techniques tend to fall into three different categories. One class
of techniques constructs global parameterizations through energy
minimizations [Ray et al. 2006; Bommes et al. 2009; Bommes et al.
2013]. Since these techniques require global energy minimization
techniques for computing the parameterization, they are often aided
by initially cutting the base domain into a collection of disk patches,
which simplifies the problem. Tong et al. [2006] provide a user-
driven approach to designing the placement of singular vertices,
whereas Dong et al. [2006] use a semi-automatic approach driven
by scalar field analysis with the Morse-Smale complex. Direction
fields are often used to guide these parameterizations, both locally
and globally [Ray et al. 2008; Lai et al. 2010]. Finally, a third class
of techniques relies on an energy optimization of centroid Voronoi
tesselations [Liu et al. 2009] to drive quadrilateral remeshing [Lévy
and Liu 2010]. While quality meshing is an important goal, a com-
plete understanding of the interplay between mesh quality and sim-
ulation quality is beyond the scope of this work. Instead we focus
herein on aspects of developing techniques for simulation that gen-
eralize to the setting of quadrilateral mesh inputs.

3 Methods

The Navier-Stokes equations model incompressible flow. Dropping
the viscosity term we arrive at the Euler equations,

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+

f

ρ
(1)

∇ · u = 0, (2)

where u is the velocity, p is pressure, ρ is the density, f is external
forces, and∇ denotes the gradient operator.

Our goal is to generalize standard computer graphics fluid sim-
ulation techniques for solving these equations to arbitrary two-
manifolds discretized with unstructured quadrilateral meshes. This
goal comprises several subtasks. First, we store the mesh and as-
sociated data by enumerating each quadrilateral, edge, and vertex
in the mesh and storing connectivity information as well as simula-
tion variables. Second, to parameterize the surface, we opt for the
straightforward solution and parameterize each quadrilateral indi-
vidually. Third, to advect variables through the mesh we employ
standard semi-Lagrangian characteristic tracing techniques, which
are complicated by the fact that when a path crosses an edge in
the mesh the parameterization changes. Fourth, to perform pres-
sure projection, we use standard finite volume methods. Finally, to
visualize our results, we either track an interface using a level-set
method or track density values through time.

3.1 Storing Data On The Mesh

We use the standard approach of staggering pressure and velocity
samples with pressures stored at quadrilateral centroids and veloc-
ity stored at edge midpoints. While the structure of regular grids
allows for trivial point location and topological queries, our more
general meshes require additional data structures to answer such
queries. In the case of an unstructured mesh, we must explicitly

enumerate and store each edge, in addition to vertices and quadri-
lateral faces. We additionally cache the solutions to a number of
calculations (such as the parameterization of a quadrilateral) for
later reuse. Specifically, we store:

For each Quadrilateral, Face, or Cell

· pressure
· centroid and normal of the best fitting plane
· a parameterization of the plane—two orthogonal three-

dimensional vectors
· pointers to the four incident vertices, in counterclockwise

order
· pointers to the four incident edges, in counterclockwise or-

der
· pointers to the four adjacent quadrilaterals, in counter-

clockwise order

For each Edge

· signed flux
· pointers to the two incident quadrilaterals, with the conven-

tion that positive flux represents flow from q0 to q1
· pointers to the two incident vertices, with the convention

that the ordering of v0 and v1 is counterclockwise in q0
· distance from the edge midpoint to each of the adjacent cell

centers
· edge midpoint in three-dimensional space
· two-dimensional normals to the edge in each incident

quadrilaterals coordinate system

For each Vertex

· density, distance values, temperature
· two-dimensional velocity (computed from the edge fluxes,

see Section 3.3.2)
· centroid and normal of the best fitting plane
· a parameterization of the best fitting plane—two orthogo-

nal three-dimensional vectors
· pointers to vertices in the one-ring, in counterclockwise or-

der
· pointers to edges in the one-ring, in counterclockwise order

3.2 Parameterization

For a given quadrilateral, we create a two-dimensional parameter-
ization by first computing its centroid and the “best-fitting” plane.
The centroid is simply the average of the four vertices—if the po-
sitions of the quadrilateral’s vertices are v0, v1, v2, and v3, then
the centroid is c = 0.25(v0 + v1 + v2 + v3). To find the best
fitting plane we apply principal component analysis to the covari-
ance matrix of the four points and choose the plane’s normal to be
the direction of least variation. Specifically let A be the covariance
matrix

A =


(v0 − c)T

(v1 − c)T

(v2 − c)T

(v3 − c)T


T 

(v0 − c)T

(v1 − c)T

(v2 − c)T

(v3 − c)T

 , (3)

the normal, n, to the best-fitting plane will be the eigenvector cor-
responding to the smallest eigenvalue. The origin of the local co-
ordinate system is v0 and, letting v01 = v1 − v0, the coordinate
axes are

e0 =
v01 − (v01 · n)n

‖v01 − (v01 · n)n‖ (4)
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and
e1 = n× e0. (5)

A point, x, on the three-dimensional quadrilateral can be re-
parameterized in this two-dimensional space as (xx, xy) =
((x− v0) · e0, (x− v0) · e1), to allow for, e.g., bilinear interpo-
lation. Note that (xx, xy) are not necessarily between 0 and 1 and
that computing bilinear weights requires re-parameterization of the
quadrilateral’s vertices and solving a quadratic equation.

3.3 Advection

Semi-Lagrangian advection is a two-step process. First, a path is
traced backwards along a characteristic of the flow field. Second,
the velocity is evaluated at the end of this path, which may be at an
arbitrary point on the surface.

3.3.1 Characteristic Tracing

In our approach we trace a piecewise linear path on the surface. In
general, we could begin at any arbitrary point, though in practice
we usually advect only quantities stored at edge midpoints and ver-
tices of the mesh. Following Feldman and colleagues [2005], we
do not apply expensive velocity fitting while tracing characteris-
tics, opting instead for bilinear interpolation of (two-dimensional)
velocities computed at vertices. Given a starting point x0 and a
timestep ∆t, we initialize a “timer” t = ∆t and begin our tracing
the characteristic with the following loop:

1. x∗ = x− tu(x)

2. Compute bilinear weights for x∗

3. If bilinear weights ∈ [0, 1]× [0, 1], return x∗

4. Check for intersection along ray from x to x∗ with an edge of
the current quad

5. Clip the path to the nearest intersection, update the timer and
current quad, and goto 1.

Despite this relatively simple description, implementation is actu-
ally quite tedious. In step 1, we compute the position we would ex-
pect the point to end up if the current quadrilateral were infinite. In
step 2, we compute bilinear weights for x∗. If the weights are valid
for this quad, then we return x∗ in step 3. If the weights are outside
[0, 1] × [0, 1] then the path will leave this quadrilateral. In step 4,
we perform edge-edge intersection test with each of the four edges
of the quadrilateral and record the closest intersection. In step 5, we
update the current quad with the appropriate neighbor and reduce
the timer by the amount of time spent traversing this quadrilateral,

Figure 1: Process of backward tracing a characteristic during
semi-Lagrangian advection. We intersect the ray from the current
position (red) to the previous position with all four edges of the
quadrilateral. After finding the nearest intersection we repeat the
procedure in the next quadrilateral. This process continues until we
have used up all the time.

x
x

x

x

x

x

x

x

Figure 2: To fit a velocity at the red point we use the two shifted
quads shown in light blue. Edges marked with an “X” are included
in the least-squares fit.

which is easily computed by dividing the distance traveled by the
velocity. Finally, we compute the new velocity in the new quadri-
lateral and continue the tracing process.

One issue that arises in practice is that approximation errors may
lead the velocity in the new quadrilateral to point into the previous
quadrilateral. In this event, we simply travel along the edge between
the two quadrilaterals until we arrive at a vertex.

3.3.2 Velocity Fitting

Because the path traced following the characteristic can end at an
arbitrary location of the mesh, we must be able to evaluate the ve-
locity at an arbitrary point, x, in quadrilateral Q. Moreover, be-
cause we are going to copy this velocity to a new location, we
do not want to incur the additional smoothing. Consequently, we
perform a least squares fit to nearby fluxes. Specifically, we use
the fluxes stored on the eight edges of two shifted quadrilaterals
(see Figure 2). The choice of shifted quadrilaterals depends on the
quadrant in which x lies. We first transform the two-dimensional
edge normals into the coordinate system of Q. Then we solve the
system


n̂T
0

n̂T
1

.

.

.
n̂T
7

u =


(n̂ · u)0
(n̂ · u)1

.

.

.
(n̂ · u)7

 , (6)

for u, where n̂i are unit-magnitude normals to the edges and (n̂·u)i
are the fluxes stored on the edges. Essentially, we seek the velocity
that minimizes the least-squares error between predicted (by u) and
actual fluxes. We solve this system by forming the normal equations
and inverting the resulting 2× 2 matrix. This matrix is invertible if
the normals, n̂i, are not identical.

Velocity Fitting at Vertices As noted above, as we trace the
path backward along the characteristic we wish to avoid the cost
of fitting a velocity many times. Instead, we bilinearly interpolate
velocities stored at vertices. These velocities are computed the
same as at an arbitrary point, except that instead of using edges
determined by shifted quads, we use the edges incident to the
vertex in the fit (see Figure 3).

3.3.3 Transforming Variables

At a number of points it is necessary to transform variables from
the coordinate system in one quadrilateral to another. These trans-
formations are applied to fit velocities that are to be copied to a dif-
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Figure 3: For a vertex, the incident edges, marked with an “X,” are
used in the least-squares fit.

ferent quad and to edge normals to perform the fit. Each quadrilat-
eral is parameterized by two (three-dimensional) vectors (see Sec-
tion 3.2). Let the source quadrilateral be parameterized by (e0, e1)
and the destination quadrilateral by (e′0, e

′
1) then the transforma-

tion matrix that takes a vector from the source parameterization to
the destination parameterization is

T =

[
e0 · e′0 e0 · e′1
e1 · e′0 e1 · e′1

]
. (7)

Note that this transformation will not generally preserve lengths. To
address this issue, we renormalize all transformed vectors to have
the same magnitude as before the transformation.

3.4 Pressure Projection

After advection we apply pressure projection to obtain an incom-
pressible velocity field. For this step we require two operators -
the divergence operator and the gradient operator. Applying the
divergence theorem, we can compute the divergence over a com-
putational cell of a vector field, u, stored on edges of the mesh as

(∇ · u) =
∑

e∈edges

(n̂e · ue)le, (8)

where (n̂e · ue) is the flux stored at the edge midpoints and le is
the length of the edge. Essentially we sum the fluxes along the
edges weighted by edge length. This approach gives us an area-
weighted divergence estimate. We use the same operator for taking
the divergence of the pressure gradient to compute the Laplacian.

For the gradient operator, which is applied to the pressure field, we
only require the component of the gradient normal to an edge. For
any edge, we divide the difference in pressure values in the adjacent
quadrilaterals by the sum of the distances from the edge midpoint
to the two quadrilateral centroids. Specifically,

(n̂ · ∇p) =
p1 − p0

‖c1 −m‖+ ‖c0 −m‖
, (9)

where p1 is the pressure in the quadrilateral in the direction of pos-
itive flux (see Section 3.1), p0 is the pressure in the other quadrilat-
eral, c1 and c0 are the quadrilateral’s respective centroids, and m is
the edge midpoint.

The Laplace operator is constructed by composing the divergence
and gradient operators allowing us to formulate and solve the well-
known Poisson equation

∇ · ∇p = ∇ · u. (10)

We then subtract the gradient of this pressure field from the edge
fluxes to arrive at a divergence free velocity field.

3.4.1 Visualization

We provide two mechanisms for visualizing the velocity fields that
result from our simulation: level-set interface tracking and density
field advection.

Level-set Interface Tracking Perhaps the most compelling and
novel of our visualization techniques is level-set interface track-
ing, which has not previously been applied to fluid simulations on
surfaces. We use semi-Lagrangian advection to solve the level-set
equation,

φt = −u · ∇φ, (11)

where φ is the level-set function and u is the velocity field. Our
semi-Lagrangian approach closely resembles that for velocity ad-
vection, however, because level-set values are stored at vertices of
the mesh we can perform bilinear interpolation instead of a least-
squares fit. Additionally, periodic redistancing is accomplished us-
ing a fast sweeping method and the taxi-cab metric (distance along
mesh edges) rather than a more accurate geodesic distance. The
taxi-cab metric will always over-estimate distance values. We have
not found this overestimation to be problematic in practice.

Density Field Advection Similar to our level-set approach we
can also track density values on the mesh, by storing the values
at vertices and applying identical semi-Lagrangian advection. In
contrast, this approach allows density values to blur during bilinear
interpolation. Essentially this approach models fluids that can mix,
as opposed to the immiscible fluids better suited to the level-set
technique.

4 Results and Discussion

We have run our simulation system with a variety of models, vi-
sualization techniques, and forcing functions. In our first exam-
ple (see Figure 4), a heavy blue fluid, with density 100 kg/m3,
is initialized above a lighter red fluid, with a density of zero, on a
“bumpy torus” mesh. As the fluids flow past each the interpolation
in semi-Lagrangian advection allows the fluids to mix. In our next
example (see Figure 5), a heat source is applied to the bottom of cat
mesh. A bouancy force is applied and the temperature advects and
diffuses throughout the mesh. When a vertex reaches a threshold
temperature it becomes visible in the video. In our next example
(see Figure 6), we demonstrate our level-set visualization. We ini-
tialize a heavy dark blue fluid above a lighter cyan one, creating a
Rayleigh-Taylor instability. As the fluids flow past each other they
create the “fingers” typical of the phenomena. Our next example
is similar (see Figure 7), but the motion is induced by rotating the
mesh. Our final example (see Figure 8) demonstrates our meth-
ods ability to handle manifolds with boundaries. The boundaries
are treated with free-slip conditions. Timing information is listed
in Table 1.

Limitations and Future Work Our current level-set implementa-
tion uses the taxi-cab metric, whereas measuring geodesics would
improve accuracy. Additionally, the color of each vertex is chosen
in a binary fashion based on the sign of the level-set function. This
choice leads to aliasing type artifacts. A better approach would be
to blend the colors along the interface. Also, it would be nice to
decouple the resolution of the level-set or density field from the
resolution of the underlying mesh. While this will lead to some ar-
tifacts [Losasso et al. 2004], higher resolution level-set or density
fields will lead to significantly improved visual results, including
less mixing of the density fields.
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Figure 4: In this example, a heavy blue fluid begins above lighter red fluid. The fluids mix as they flow past each other.

Figure 5: In this example, a heat source at the bottom of the cat creates a buoyancy force that drives the smoke throughout the cat model.

Figure 6: In this example, a heavy blue fluid is placed above a lighter cyan fluid. Using the level-set interface tracking prevents the fluids
from mixing.

Figure 7: In this example, the cyan fluid is heavier than the blue fluid. Rotation of the model induces the flow.

Figure 8: This example demonstrates our ability to handle manifolds with boundaries.
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Example # Faces Steps/Frame Time/Step Advection Pressure
Figure 4 95256 6 11.1698 4.28228 5.4037
Figure 5 115296 2 9.15138 1.70077 6.05998
Figure 6 140608 6 19.3425 3.84929 13.1703
Figure 7 62842 1 4.73444 0.779622 1.87488
Figure 8 94475 1 13.4323 3.50538 8.32156

Table 1: Timing results (in seconds) for various meshes recorded on a single-core of an Intel Core(TM) i7 CPU processor at 1.67 GHz with
6 GB of memory.

Finally, we note that one of the main goals of our future work is to
better understand the relationship between a simulation and the un-
derlying mesh. Such understanding will guide both simulation and
meshing research and foster closer integration of the two. While
our experiments have made clear that the underlying mesh affects
the simulation we have only just begun to study this question.
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