
Author Preprint. To appear at ACM Motion in Games 2014.

Strain Limiting for Clustered Shape Matching

Adam W. Bargteil∗

University of Utah
Ben Jones†

University of Utah

Abstract

In this paper, we advocate explicit symplectic Euler integration and
strain limiting in a shape matching simulation framework. The re-
sulting approach resembles not only previous work on shape match-
ing and strain limiting, but also the recently popular position-based
dynamics. However, unlike this previous work, our approach re-
duces to explicit integration under small strains, but remains stable
in the presence of non-linearities.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation.

Keywords: Strain Limiting, Shape Matching, Position-based Dy-
namics

1 Introduction

Almost a decade ago, Müller and colleagues [2005] introduced
shape matching for physics-based computer animation. In this ap-
proach objects are discretized into a set of particles, pi ∈ P , with
rest positions, ri, that follow a path, xi(t), in world-space through
time. At each frame, shape matching solves for the rotation matrix,
R, and a translation vector, xcm − rcm, that minimize∑

i

(R (ri − rcm)− (xi − xcm))2 . (1)

The best translations are given by the center-of-mass in the rest and
world space, respectively. The rotation, R, is computed through a
polar decomposition. Intuitively, this computation yields the least-
squares best-fit rigid transformation from the rest pose to the cur-
rent deformed pose. This transformation allows us to define goal
positions, gi,

gi = R (ri − rcm) + xcm. (2)

Hookean springs are then used to define forces that move the parti-
cles toward the goal positions. This basic approach was extended by
including linear and quadratic global deformations, cluster-based
deformations, and plasticity.

In their seminal work, Müller and colleagues [2005] also used lin-
ear stability analysis to describe the criteria under which the ex-
plicit, symplectic Euler time integration is guaranteed to be stable in
this shape matching framework. Unfortunately, this analysis breaks
down in the presence of non-linearities, such as many overlapping
shape matching clusters.

More recently, position-based dynamics (PBD) [Müller et al. 2007;
Stam 2009; Bender et al. 2014] has become extremely popular, es-
pecially in real-time and interactive applications. In this paradigm,
“forces” act directly on positions rather than indirectly through ve-
locities. The approach is frequently described in the language of
constraints. For example, instead of a spring force, two particles
will be constrained to be a certain distance apart. Constraints may
take a variety of forms [Bender et al. 2014] and different constraints

∗adamb@cs.utah.edu
†benjones@cs.utah.edu

Figure 1: A bunny simulated with our approach.

may be in opposition, which naturally leads to the exploration of
different constraint solvers [Macklin et al. 2014]. In any case, con-
straints are rarely solved exactly, which allows for deformations
over time. With some care in the formulation of constraints and
choice of constraint solver, PBD can be guaranteed to be stable,
which makes it extremely appealing for real-time computer anima-
tion.

While these two approaches are related, there is a very critical
difference—shape matching integrates second-order spring forces
through time to move particles toward goal positions; in contrast,
PBD updates positions directly, essentially using first-order springs.
While very useful for a variety of graphical applications, the direct
positional updates violate Newton’s first and second laws of mo-
tion. This limitation manifests in highly damped deformations, a
lack of elastic oscillations, and poor energy and momentum preser-
vation. If treated in this fashion, gravity would produce linear paths
not parabolic arcs.

A related approach is strain limiting, which was introduced by
Provot [1995] almost 20 years ago.1 Like PBD, strain limiting
works through constraints and suffers from the limitations dis-
cussed earlier. However, strain limiting typically tries to enforce an
upper-bound on strain and is applied after time integration. Thus,
the limitations are ameliorated because under small strains, strain
limiting has no effect. In contrast, PBD replaces time integration
with (typically) zero-strain constraints and achieves deformation by
not iterating to convergence.

In this paper, we advocate pairing second-order physics simulation
through clustered shape matching with strain limiting. While nei-
ther of these ideas are new, we are the first to combine them. The
resulting method is extremely practical: it is fast, stable even in the
presence of the non-linearities introduced by the overlapping clus-
ters, and preserves the second-order dynamics of clustered shape
matching under smaller strains.

2 Methods

Clustering To create the clusters in our cluster-based shape
matching we allow the user to specifiy a neighborhood radius, d.
Then we iteratively choose a random particle, pi ∈ P , and create a
new cluster, c ∈ C, centered at pi, that includes all particles within
distance d of pi. Formally, the set of particles in the cluster is

Pc = {pj | ‖xi − xj‖ ≤ d} ⊆ P. (3)

Iterations continue until all particles are placed into at least one
cluster. The mass of a particle is distributed among its clusters and

1Our formulation very closely resembles that suggested by Bridson and
colleagues [2002].

1



Author Preprint. To appear at ACM Motion in Games 2014.

Algorithm 1 Strain Limiting for Shape Matching

1: compute goal positions(0)

2: v∗i = vi(t) + α
gi − xi (t)

h
+ h

fext(t)

mi

3: x0
i = xi(t) + hv∗i

4: for j = 0 to iters do
5: compute goal positions(γ)

6: xj+1
i = ωgi + (1− ω)xj

i

7: end for
8: xi(t+ h) = xiters

i

9: vi(t+ h) =
xi(t+ h)− xi(t)

h

this fact is taken into account when computing the cluster’s total
mass and center of mass. This weighting ensures that the center
of mass of the clusters is the same as the center of mass of the
particles and that spring forces obey Newton’s third law. Our ran-
domized algorithm is simple and allows user control over the size
of shape matching clusters, but it does suffer from significant mass
lumping errors that lead to non-uniform distribution of mass, which
in turn introduces unintuitive intertial effects and dynamics that do
not necessarily preserve symmetries of the underlying particle dis-
tributions. For example, an axis aligned scale of a cube can induce
rotations. We do not doubt that more sophisticated algorithms could
achieve improved results.

Animation Runtime Our approach is summarized in Algo-
rithm 1. The function compute goal positions(), which
computes goal positions by averaging over shape-matching clus-
ters, is summarized in Algorithm 2. Our algorithm has several
parameters: the timestep, h, a gain for the internal spring forces,
α, a relaxation coefficient for the constraint solver, ω, the number
of constraint solver iterations, iters, and the strain limiting thresh-
old, γ. We typically set the timestep to the framerate (60 Hz).
α ∈ [0, 1] is related to the spring stiffness, k, through the sub-
stitution α = h2k/m and is the same value used by Müller and
colleagues [Müller et al. 2005]. If α = 1 then the positions will
move to the goal positions in line 3. Note that this does not guar-
antee that all constraints are solved. ω is a relaxation constant that
we typically set to 1, though Macklin and colleagues [2014] note
faster convergence with over-relaxation—values between 1 and 2.
We typically allow 3-5 iterations of the constraint solver.

Given the strain-limiting threshold, γ, and letting gic be the goal
position for particle pi given by shape matching cluster c, we en-
force strain-limiting constraints of the form

β =
‖xi − gic‖

wc
< γ, (4)

where wc is the cluster width,

wc = max
pi∈PC

‖ri − rcm‖, (5)

which accounts for the spatial scale of the cluster. In this formu-
lation, γ = 0 corresponds to equality constraints; we typically use
γ ∈ (0.1, 0.5). So that elastic forces attempt to undo all deforma-
tion, we pass 0 to compute goal positions() in line 1 of
Algorithm 1.

3 Discussion

The primary difference between our algorithm and PBD is the in-
clusion of “internal forces” in line 2 of Algorithm 1. Indeed if we

Algorithm 2 compute goal positions(γ)

1: for all pi ∈ P do
2: gi = 0

3: ni = 0

4: end for
5: for all c ∈ C do
6: Compute R and xcm

7: for all pi ∈ Pc do
8: gic = R (ri − rcm) + xcm

9: β =
‖xi − gic‖

wc

10: gi += gic +min

(
γ

β
, 1

)
(xi − gic)

11: ni ++

12: end for
13: end for
14: for all pi ∈ P do
15: gi/ = ni

16: end for

set α = 0 (and, typically, γ = 0 as well) our solver reduces to a
form of PBD. While this may seem like a small change, it is actu-
ally quite significant. Consider a simple mass point connected to
a single spring with zero rest length. Our integrator will oscillate
around the anchor point. In contrast, when using PBD if the con-
straint is satisfied for two subsequent timesteps, the velocity is set to
zero and all motion ceases. This effect can be seen for a simple ex-
ample in the accompanying video. The importance of second-order
effects can also be seen in Figure 2, where PBD results in energy
and momentum loss compared to shape matching when simulating
a simple rotating cube.

On the other hand, setting iters = 0 (or ω = 0) is equivalent to
the original shape matching integrator [Müller et al. 2005]. This
integrator works well when forces are linear in positions, but many
overlapping shape matching clusters introduce non-linearities that
can cause this integrator to become unstable. By employing strain
limiting, we ensure that forces, and consequently velocities, remain
bounded and the simulation remains stable.

As a simple first example, we take a cube and stretch it by 50%
in the x-direction. We show the result for a variety of parameter
settings. For a large neighborhood radius, we get a single cluster.
With a smaller radius we generate 29 clusters, which results in more
interesting and local behavior. In our next set of examples, instead
of stretching the cube we drop it on the ground. Our final example
is of the bunny bouncing on the ground. This example has 2020
particles grouped into 26 clusters. Note that most of our examples
intentionally do not include damping forces in order to highlight the
advantages of our approach. We include one additional example
of the bunny with damped springs, which results in more natural
behavior.

Regarding computation time, our current implementation is dom-
inated by the compute goal positions() routine. Our ap-
proach adds an additional call to this routine compared to PBD and
several calls compared to traditional shape matching. However, our
program still generally runs at real-time rates as a sequential pro-
cess on a CPU. For example, for each 60 Hz frame, the damped
bunny example took 0.370 ms for shape matching (everything in
Algorithm 1 except lines 4-7) and 0.713 ms for strain limiting (lines
4-7 in Algorithm 1).

2



Author Preprint. To appear at ACM Motion in Games 2014.

Figure 2: Shape matching preserves kinetic energy and angular
momentum of a cube rotating counter-clockwise, while PBD does
not. The red spheres are from a shape matching simulation; the
blue spheres are simulated with PBD.

Limitations and Future Work Our approach to creating shape-
matching clusters is simple and effective, however we believe better
results could be achieved with more sophisticated algorithms that,
for example, introduce multi-scale clusters. We would also like
to address the mass lumping errors so that geometric symmetries
are preserved in the dynamics. Finally, our current implementation
is limited to a sequential process on a CPU. However, we believe
our algorithm should parallelize well and, like shape matching and
PBD, map very well to a GPU.

Conclusion Given the success of strain limiting in a variety of
computer graphics simulations [Provot 1995; Bridson et al. 2002;
Thomaszewski et al. 2009; Wang et al. 2010], it is not surprising
that it works well in the shape matching context. We expect that the
improved results afforded by our approach will lead to its speedy
adoption.

Acknowledgments

The authors wish to thank the anonymous reviewers for their time
and helpful comments. This work was supported in part by National
Science Foundation award IIS-1314896.

References

BENDER, J., MLLER, M., OTADUY, M. A., TESCHNER, M., AND
MACKLIN, M. 2014. A survey on position-based simulation
methods in computer graphics. Computer Graphics Forum, 1–
25.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Trans. Graph. 21, 3, 594–603.

MACKLIN, M., MÜLLER, M., CHENTANEZ, N., AND KIM, T.-Y.
2014. Unified particle physics for real-time applications. ACM
Trans. Graph. 33, 4, 104.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. Graph. 24, 3 (July), 471–478.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2, 109–118.

PROVOT, X. 1995. Deformation constraints in a mass-spring model
to describe rigid cloth behavior. In Graphics Interface, 147–154.

STAM, J. 2009. Nucleus: Towards a unified dynamics solver for
computer graphics. In International Conference on Computer-
Aided Design and Computer Graphics, 1–11.

THOMASZEWSKI, B., PABST, S., AND STRASSER, W. 2009.
Continuum-based strain limiting. Comput. Graph. Forum 28,
2, 569–576.

WANG, H., O’BRIEN, J., AND RAMAMOORTHI, R. 2010. Multi-
resolution isotropic strain limiting. ACM Trans. Graph. 29, 6,
156:1–156:10.

3


