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In this article, we investigate the use of quadratic finite elements for graphi-
cal animation of deformable bodies. We consider both integrating quadratic
elements with conventional linear elements to achieve a computationally
efficient adaptive-degree simulation framework as well as wholly quadratic
elements for the simulation of nonlinear rest shapes. In both cases, we adopt
the Bézier basis functions and employ a co-rotational linear strain formula-
tion. As with linear elements, the co-rotational formulation allows us to
precompute per-element stiffness matrices, resulting in substantial com-
putational savings. We present several examples that demonstrate the ad-
vantages of quadratic elements in general and our adaptive-degree system
in particular. Furthermore, we demonstrate, for the first time in computer
graphics, animations of volumetric deformable bodies with nonlinear rest
shapes.
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1. INTRODUCTION

Over the last decade there has been an explosion in the use of fi-
nite element methods for computer animation of deformable bod-
ies. These methods have been used to animate numerous special
effects in films and are commonly used to animate deformable bod-
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Fig. 1: Helices with quadratic rest shapes dropped onto some obstacles.

ies in video games. Computer graphics has generally favored linear
simulation elements, both for defining geometry as well as field
variables, due to their simplicity and computational efficiency. On
the contrary, outside of computer graphics higher-order methods
are often preferred, in part for improved accuracy and convergence
properties. While in computer graphics we are not necessarily con-
cerned with traditional notions of accuracy or convergence, high-
order elements do offer several important advantages over linear
elements. In particular, high-order elements allow us to animate
nonlinear geometry and offer a natural way to add degrees of free-
dom to a simulation mesh, allowing low-resolution meshes to pro-
vide animation quality of much higher resolution.

In this article, we develop a quadratic tetrahedral element based
on the Bézier basis. We then integrate this element with linear el-
ements to achieve an adaptive simulation system where elements
undergoing large deformation are higher order than elements un-
dergoing small deformations. By adopting a co-rotational linear
strain formulation that allows us to precompute per-element stiff-
ness matrices and speeds force computations, we avoid online nu-
merical quadrature and achieve performance that is orders of mag-
nitude faster than more general quadratic elements. We also adapt
the co-rotational formulation to elements with nonlinear rest shapes
(see Figure 1).

The result is a simulation system that can animate nonlinear geom-
etry and, for a modest overhead compared to linear finite-element
simulation, can locally increase degrees of freedom without resort-
ing to remeshing strategies.
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2. RELATED WORK

Since the pioneering work of O’Brien and Hodgins [1999], tetra-
hedral finite-element methods have been an extremely popu-
lar approach for animating deformable bodies. Müller and col-
leagues [2002; 2004] introduced a co-rotated finite-element formu-
lation that admits the use of linear strain metrics without incurring
the usual distortions under large deformations. This approach is
particularly appealing in a computer graphics context because with
linear strain the stiffness matrix becomes constant and can be pre-
computed. For this reason, we adopt this formulation. Building on
this approach, Irving and colleagues [2004] developed an extremely
robust technique that handles degenerate and inverted elements.
Parker and O’Brien [2009] used the co-rotational formulation for
simulations of deformation and fracture in a real-time videogame
environment. More recently, researchers have pointed out that tradi-
tional implementations of the co-rotational model ignore rotational
derivatives when computing the stiffness matrix [Chao et al. 2010]
and that even with these derivatives there may still be stability is-
sues [Stomakhin et al. 2012].

We are not the first computer graphics researchers to use high-
order elements in simulation. Roth and colleagues [1998] used the
Bézier basis for tetrahedral finite-element simulation more than
a decade ago. They avoided numerical integration by integrating
forces analytically, as we do for linear rest shapes. However, they
were concerned with modeling the effects of plastic surgery and
sought equilibrium solutions, ignoring dynamics. More recently,
Mezger and colleagues [2009] used quadratic elastoplastic co-
rotational finite-element simulations for shape editing. Weber and
colleagues [2011] also used quadratic Bézier co-rotational elements
for interactive simulation of deformable models and created a GPU
implementation [Weber et al. 2013]. None of these approaches con-
sidered adaptive-degree elements or quadratic rest states.

Remion and colleagues [1999] performed high-order simulations of
one-dimensional objects using splines. Similarly, Kaldor and col-
leagues [2008] used cubic splines to simulate knitted cloth. Grin-
spun and colleagues [2002] performed several simulations with
high-order basis functions. Kaufmann and colleagues [2009] used
non-nodal quadratic polynomial basis functions defined over ar-
bitrary polyhedra in a discontinuous Galerkin method. A num-
ber of other researchers have looked at using arbitrary polyhedral
elements. Such elements require more complex basis functions.
Wicke and colleagues [2007] considered basis functions derived
from mean-value coordinates [Ju et al. 2005] and Martin and col-
leagues [2008] used basis functions derived from harmonic coor-
dinates [Joshi et al. 2007]. In a similar vein Kaufmann and col-
leagues [2009] present an Extended Finite-Element Method (X-
FEM) approach to modeling high-resolution fractures of shells
by updating basis functions stored as textures. Bickel and col-
leagues [2009] used radial basis functions to model heterogeneous,
nonlinear materials. The radial basis functions were fit to captured
deformations that were assumed to be samples of a locally linear
stress-strain relationship.

Of course, high-order analysis is routine in other fields of engineer-
ing and numerical analysis. Our finite-element approach is an in-
stance of the more general hp-FEM method pioneered by Babuška
and colleagues (see, e.g., Babuška and Suri [1990]) in the field of
solid mechanics. This method admits both hierarchical (h), namely
geometric division of elements, and polynomial (p), namely in-
creasing polynomial degree, refinements. Our approach, then, is an
instance of p-refinement [Babuška et al. 1981]. Working in fluid
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Fig. 2: The left image shows the canonical tetrahedron, with its quadratic
control points labeled by their multi-indices. The right image shows the
quadratic deformation induced by the deformed control mesh.

mechanics, Orszag [1969] pioneered spectral methods which also
take advantage of high-order bases. Usually globally supported
functions are used, though the spectral-element method [Patera
1984], which combines finite-element and spectral techniques, uses
a locally supported high-order piecewise polynomial basis. The text
by Hughes [1987] briefly covers high-order tetrahedral finite ele-
ments as well as the use of transition elements that allow for the in-
tegration of high- and low-order elements in quadrilateral meshes.
When our elements contain both linear and quadratic edges, they
may be thought of as such transition elements. More recently, there
has been interest in isogeometric analysis, which seeks to unify ge-
ometric representations with finite-element basis functions [Borden
et al. 2011].

Debunne and colleagues [2001] introduced spatial adaptivity in
computer graphics by using a non-nested multiresolution hierar-
chy of tetrahedral meshes. Another approach to adaptivity was pro-
posed by Grinspun and colleagues [2002]. Instead of using geomet-
ric refinement, creating smaller tetrahedra in areas of interest, they
refine basis functions. This approach is somewhat similar in spirit
to our approach, however, instead of adding basis functions with in-
creasingly limited areas of influence, we increase the degree of our
basis functions. An advantage of their approach is that it can allow
for arbitrary differences in refinement over the mesh, while we are
limited to just two different degrees of polynomials. If greater res-
olution is necessary their approach could be used to complement
ours.

3. METHODS

In this section we first derive the quadratic Bézier element and then
present how we integrate these elements with linear elements to
create an adaptive simulation system.

3.1 Barycentric Coordinates and Bernstein Polynomials

Barycentric coordinates allow us to express quantities inside a sim-
plex in terms of values at the vertices. For a point inside a tetrahe-
dron, the barycentric coordinates, α = [α0, α1, α2, α3], have the
properties that αj ≥ 0 and

∑
αj = 1. The second property implies

that the barycentric coordinates are not independent. We remove
the redundancy by considering α0 = 1−α1−α2−α3 as a function
of the other barycentric coordinates. One way to view barycentric
coordinates is as the position of a point [α1, α2, α3] in a canonical
tetrahedron with v0 = [0, 0, 0], v1 = [1, 0, 0], v2 = [0, 1, 0], and
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v3 = [0, 0, 1] (see Figure 2). In the following section we will define
mappings of this canonical tetrahedron to both world and material
space. Note that because v0 lies at the origin, vj − v0 = vj . We
take advantage of this slight abuse of notation in the formulas that
follow.

We generalize the usual linear basis function over each element by
using the Bézier basis which is given by the Bernstein polynomials.

Bn
i (α) =

n!

i0!i1!i2!i3!
αi0

0 α
i1
1 α

i2
2 α

i3
3 (1)

Here, n is the degree of the polynomial, the point α is represented
in barycentric coordinates, and i = [i0, i1, i2, i3] is a multi-index
such that |i| =

∑
ij = n and all ij >= 0.

We chose the Bézier basis for several reasons. First, the Bézier ba-
sis is very intuitive to work with. Because the control points are
naturally associated with the vertices and edges of the tetrahedron
it is easy to understand connectivity among tetrahedra and the ef-
fect of raising and lowering the order on the control points as well
as handling adjoining tetrahedra of different degrees. Second, the
basis functions are all nonnegative. Third, because the basis func-
tions sum to one and are nonnegative, the Bézier basis has the con-
vex hull property. Though we do not take advantage of it in our
current implementation, this property is especially useful for accu-
rate collision detection. Finally, the Bézier basis is very familiar in
the computer graphics community. The Bézier basis does have one
drawback compared to other bases: they are not hierarchical in the
sense that the set of functions that span the space of quadratic poly-
nomials do not include the functions used to span linear polynomi-
als. This fact means that as we change the order of our elements,
we do not simply add basis functions; we move to a different set of
functions.

3.2 Quadratic Elements

We now generalize the standard formulation of elasticity for lin-
ear finite elements used in computer graphics (see, for example,
O’Brien and Hodgins [1999]) to Bézier tetrahedra.

We begin by defining a mapping from points, u, in material space
to points, x(u), in deformed or world space. Let mi be the posi-
tions of control points in material space and pi be the positions of
control points in world space. Then, given the (four-dimensional)
barycentric coordinates, α, of a point in a Bézier tetrahedron,

u(α) =
∑
|a|=n

maB
n
a (α) x(α) =

∑
|a|=n

paB
n
a (α) . (2)

x(u) is then given by

x(u) =

∑
|a|=n

paB
n
a

 ◦
∑
|b|=n

mbB
n
b

−1

(u) . (3)

Unfortunately, this mapping involves the inverse of a polynomial
function, for which there is no closed form. For now we restrict our-
selves to the simpler case of linear rest shapes, where all quantities
can be integrated analytically, and develop our adaptive simulation
approach. We consider nonlinear rest shapes in Section 3.7.

A linear mapping from the canonical tetrahedron to material coor-
dinates can be expressed as

u(α) = m0 +

3∑
i=1

(mi −m0)αi. (4)

The gradient of this mapping can be represented as a matrix, the
columns of which are (mi −m0). Let β be the inverse of this
matrix.

3.2.1 Deformation Gradient. The mapping x(u) is often re-
ferred to as the deformation function. The gradient of this function
is called the deformation gradient and is denoted as F . InR3, F is
a 3× 3 matrix, with the ij-entry given by

Fij =
∂xi
∂uj

=

3∑
k=1

∂xi
∂αk

∂αk

∂uj

=

3∑
k=1

∂xi
∂αk

βkj , (5)

where, invoking the Bézier basis,

∂xi
∂αk

=
∑
|a|=n

pai
∂Bn

a (α)

∂αk

=
∑
|a|=n

npai

(
Bn−1

a−[k] (α)−Bn−1
a−[0] (α)

)
. (6)

Note, we are using [k] to denote the multi-index with the kth ele-
ment set to one (for example, [2] = [0, 0, 1, 0]), n is the polyno-
mial degree, pai is the ith coordinate of the point pa. Subtraction
of multi-indices is analogous to vector subtraction, except that any
multi-index containing a −1 yields a basis function that is identi-
cally zero. Some substitution yields

Fij =

3∑
k=1

∑
|a|=n

npai

(
Bn−1

a−[k] (α)−Bn−1
a−[0] (α)

)βkj . (7)

Note that F is spatially varying.

3.2.2 Stress. For its computational efficiency we use the popular
rotated linear stress model [Müller and Gross 2004; Irving et al.
2004; Parker and O’Brien 2009]. To do so we compute the polar
decompositionF = QF̃ and then compute the co-rotational strain,
ε̃, and stress, σ as

ε̃ =
1

2

(
F̃ + F̃ T

)
− I σ = λTr (ε̃) I + 2µε̃, (8)

where λ and µ are Lamé constants of the material. Note that while
F̃ = F̃ T , this form for ε̃ is required when we take the gradient of
the elastic energy to arrive at forces (see Equation (10)). Because
F is spatially varying, the best-fitting rotation varies as well. How-
ever, we assume that the variation is small and compute the polar
decomposition using just the control points at the vertices of the
tetrahedron. This approach gives the same rotation, regardless of
whether the tetrahedron is linear or quadratic, and works well in
practice.

3.2.3 Elastic Forces. For linear, constant-strain elements, elastic
forces induced by an element upon a control point can be com-
puted by integrating the product of stress and the gradient of the
basis functions over the element [Bonet and Wood 2008]. Because
of the relationship between cross products and matrix inversion in
three dimensions, this amounts to multiplying the stress by area-
weighted normals [Teran et al. 2003]. With our quadratic elements
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it is slightly more complicated. In our case, the c-dimensional com-
ponent of the force on node a is given by

f̃ac = 6v

∫
E

∑
i,j

σci
∂B2

a

∂αj

βjidα, (9)

where v is the volume of the element in material space. Some sub-
stitution yields

f̃ac = 6λv
∑

b,i,j,k

x̃biβjiβkc

∫
E

∂B2
b

∂αj

∂B2
a

∂αk

dα

+ 6µv
∑

b,i,j,k

x̃bcβjiβki

∫
E

∂B2
b

∂αj

∂B2
a

∂αk

dα

+ 6µv
∑

b,i,j,k

x̃biβjcβki

∫
E

∂B2
b

∂αj

∂B2
a

∂αk

dα

− (18λ+ 12µ) v
∑
i

βic

∫
E

∂B2
a

∂αi

dα, (10)

where∫
E

∂B2
b

∂αj

∂B2
a

∂αk

dα =∫
E

4
(
B1

b−[j](α)−B1
b−[0](α)

)(
B1

a−[k](α)−B1
a−[0](α)

)
=

4

∫
E

B1
b−[j](α)B1

a−[k](α)− 4

∫
E

B1
b−[0](α)B1

a−[k](α)−

4

∫
E

B1
b−[j](α)B1

a−[0](α) + 4

∫
E

B1
b−[0](α)B1

a−[0](α). (11)

Each of these last four integrals evaluate to 0 if either of the multi-
indices contain a −1, 1/120 if they contain two different multi-
indices, and 1/60 if the multi-indices are the same.

There are two principal differences between Equation (10) and
that for the linear case. First, a quadratic tetrahedron has ten con-
trol points, rather than just four. Second, with a linear tetrahedron
the integrals of the products of basis functions evaluate to 0 or
±1/6, where 1/6 is the volume of the canonical tetrahedron. In
the quadratic case the integrals are the sum of four terms that are
either 0,±1/15, or±1/30. The rest of the terms are the same as in
linear elements. The last term in Equation (10) is a “force offset”
that accounts for the fact that forces are based on displacements not
absolute positions. Müller and Gross [2004] had a similar term.

Forces computed with Equation (10) are in the rotated space. To
rotate them to world space, we multiply byQ. The damping forces
are similarly computed, though there are no force offsets and the
control point velocities are used instead of positions. The stiff-
ness and damping matrices are symmetric,1 positive semi-definite,
and are straightforward to compute by taking the gradient of Equa-
tion (10), which is linear in positions.

3.3 Precomputation

Our implementation is able to use several explicit and implicit inte-
grators. Implicit integration requires building a system matrix that
includes terms from the stiffness and/or damping matrices. Fortu-
nately, because we use a rotated linear strain model, the stiffness

1Symmetry can be verified by manipulating the gradient of Equation (10).

and damping matrices for each element are constant through all
time, up to a rotation. Thus, at the beginning of the simulation, we
precompute each element’s linear and quadratic stiffness and damp-
ing matrices. By requiring that the material parameters for damp-
ing have the same ratio as λ and µ, a model known as Rayleigh
damping, the element stiffness and damping matrices are identical
up to a constant, and only one need be stored. While we have not
found this restriction to be problematic in practice, more general
damping models could be employed with increased storage. The
global stiffness and damping matrices incorporate different rota-
tions, however, and cannot be precomputed. The stiffness matrix
for a linear element has only 78 unique entries. However, the stiff-
ness matrix for a quadratic element is a dense 30 × 30 symmetric
matrix and contains 465 unique entries. We also precompute the
“force offsets” for each element (another 30 numbers) and store
the β matrices and area-weighted normals (for force computations
in linear elements) for a total of 594 numbers per element. This
equates to more than 4.5 kilobytes of storage per element. This may
seem a large memory footprint, but when one considers that divid-
ing a linear tetrahedron at edge centers results in 8 tetrahedra, which
yields 624 unique matrix entries and 72 force offsets, it becomes
clear that quadratic tetrahedra require less memory per degree of
freedom than linear tetrahedra. Furthermore, on modern computers
the memory requirements are negligible—even our largest experi-
ments required less than 150MB of memory. However, streaming
these matrices when computing forces does result in a significant
number of cache misses.

3.4 Adaptivity

In a typical simulation there are, on average, a large number of
elements that are very near their rest configuration. If the rest
shape is linear, performing the added computations associated with
quadratic elements for these tetrahedra is not an efficient use of
computational resources. For this reason, our system incorporates
both linear and quadratic elements. To do so, we must treat edges
that are incident to both linear and quadratic tetrahedra specially.

From the point of view of quadratic tetrahedra, there is a degree of
freedom along such edges, but from the point of view of the linear
tetrahedra there is not. We handle this case by constraining the po-
sition and velocity of a control point along such an edge to be the
average of the values at the endpoints. Any force that the quadratic
tetrahedron would exert on the control point is distributed to the
endpoints, half to each. Additionally, such control points are re-
moved as degrees of freedom from any implicit solve. Any values
they would have added to the global system matrix are redistributed
to the endpoints. In the case that two edges in a quadratic tetrahe-
dron are both constrained, the entries for the interactions between
them are divided among the four endpoints, 1/4 to each. It is possi-
ble that one of the endpoints is shared by both edges, in which case
it gets 1/2 of the value.

When all of the elements incident to an edge become quadratic,
the control point associated with the edge is added as a degree
of freedom. The mass of the control point is determined using a
lumped mass formulation as 1/10 the mass of the tetrahedron and
the masses at the endpoints are reduced by 1/20 the mass of the
tetrahedron. The new control point’s velocity is initialized to the
average of the endpoints’ velocities. Consequently, momentum is
preserved during refinement. Adopting a full mass matrix will en-
sure that kinetic energy is also preserved, but would also increase
complexity and runtimes.
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When deciding which elements should be linear and which should
be quadratic, it is convenient to take an edge-centric point of view
and decide what degree each edge should be. A variety of rules
could be used to determine the degree of an edge. We have adopted
the following, simple approach. Each tetrahedron does the full
quadratic elastic and damping force calculations. Then, the posi-
tion of the edge midpoint is predicted assuming both linear and
quadratic states and the results are compared. If the difference in
the predicted position is larger than a threshold, the edge becomes
quadratic. If the difference is smaller than another (smaller) thresh-
old then the edge is linear. We additionally require edges to main-
tain the same state for a minimum number of timesteps to avoid
oscillations (5 in our examples). This approach does require that
we multiply by a 30 × 30 matrix instead of a 12 × 12 matrix for
each element and represents the most significant difference in cost
between linear and quadratic elements.

A consequence of adaptive degree elements is that the nonzero
structure of the global system matrix is constantly changing. Our
implementation allocates memory to store the entire stiffness ma-
trix with all quadratic tetrahedra at the beginning of the simulation.
We store the matrix in 3 × 3 blocks and only the lower triangular
portion of the matrix is stored. When an edge becomes quadratic
the control point along that edge becomes active and its row in the
matrix is enabled. Additionally, all the other control points that the
newly enabled point interacts with have another block turned on in
their row. As mentioned before, stiffness values for inactive con-
trol points are distributed to edge endpoints. In addition to adding
degrees of freedom to the stiffness matrix, we remove degrees of
freedom every timestep as well. When removing degrees of free-
dom we must increase the mass at the endpoints of the edge and
adjust their velocities to preserve momentum.

In this way, we have opted for a reduced coordinates formulation to
handle constraints. Another option is Lagrange multipliers, which
would allow the particularly elegant approach of choosing the de-
gree of edges based on the magnitude of their associated Lagrange
multipliers. In fact, this approach would open the door to character-
izing the constrained solution as a Linear-Complimentarity Prob-
lem (LCP) with a bound on the magnitude of the allowed Lagrange
multiplier. However, our system has variable size no larger than
|V| + |E|, where V is the set of vertices and E is the set of edges.
On the other hand, the system augmented with Lagrange multipli-
ers has size |V|+2|E| characterized as an LCP or, if the constraints
C are constant throughout the solve, |V| + |E| + |C|. Given that
|V| is substantially smaller than |E|, we felt the additional cost was
prohibitive.

3.5 Time Integration

We have experimented with a number of explicit and implicit time
integration schemes, specifically, symplectic forward Euler, two
variations of linearly implicit Euler (one that computes velocity
updates as proposed by Baraff and Witkin [1998] and another
that computes new velocities directly), the variational integrator
of Kharevych and colleagues [2006], and a mixed implicit-explicit
Newmark scheme [Bridson et al. 2003]. Of these, we favor the lin-
early implicit Euler that solves for new velocities directly. Specifi-
cally, the system we solve is(
M −∆t2K −∆tD

)
vt+∆t = Mvt + ∆t (fe + fb) , (12)

whereM ,K, andD are the mass, stiffness, and damping matrices,
respectively; ∆t is the timestep, vt and vt+∆t are the velocities

before and after the timestep, and fe and fb are elastic and body
forces. We then update positions,

xt+∆t = xt + ∆tvt+∆t. (13)

We found that this scheme has the desirable properties of affording
large timesteps, largely avoiding artificial damping, and requiring
only a single Newton iteration. In contrast, the explicit and New-
mark schemes are not competitive due to timestep restrictions, and
computing velocity updates introduces substantial artificial damp-
ing. The variational integration scheme produces results very sim-
ilar to our preferred scheme. In fact, some algebraic manipulation
reveals that the schemes are quite similar, the main differences be-
ing that the variational scheme multiplies the stiffness matrix by
1/4 and uses an average of force evaluations taken ∆t/2 before
and after the timestep. The elegance and accuracy of the varia-
tional scheme come at the cost of additional Newton iterations and
force evaluations, which results in significantly longer computation
times.

3.6 Timestep Summary

In this section we give an overview of the computations involved in
our adaptive approach.

Compute forces. Elastic and damping forces are computed by
looping over the elements, assembling a matrix of position differ-
ences (xi − x0), and computing a polar decomposition. Our fast
polar decomposition uses Jacobi iterations and is warm-started with
the rotation from the previous timestep. Forces are then computed
by rotating the current position, multiplying by the stiffness matrix,
and rotating back

fab = QKabQ
Txb, (14)

where fab is the force exerted on control point a by control point b.
The force offsets must also be added (see Equation (10)) for elastic
forces. We cache the rotation from the polar decomposition for later
assembly of the global system matrix.

Choose degree. For each edge decide whether it should be linear
or quadratic. If there is a change in status, enable or disable rows
and columns in the global system matrix.

Handle constrained control points. For each constrained con-
trol point, set its position and velocity to the average of the values
at the endpoints and apply forces that were intended for constrained
edge midpoints to the edge endpoints, half to each.

Compute global system matrix. For each element, use the
cached polar decompositions to rotate the element stiffness and
damping matrices and place them into the global stiffness matrix,
taking care to distribute contributions from constrained edge con-
trol points.

Update positions and velocities. Positions and velocities are
updated according to the timestepping scheme. The scheme may
require additional force computations. Collisions are usually han-
dled between velocity and position updates. Self- and inter-object
collisions are handled with the open-source El Topo library [Brochu
and Bridson 2009].

So, what are the differences between an implementation of our ap-
proach and linear finite-element simulation? The answer is, not
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Fig. 3: A simple simulation of a swinging bar. Despite the coarse mesh, the quadratic elements are able to quite closely match the high-
resolution simulation (in pink). Two frames from each animation are displayed in the figure. See Table I for resolution details.

Linear (low res) Linear (med res) Linear (refined) Quadratic

Fig. 4: A twisting bar. Notice the continuous quadratic curves along the edges of the quadratic case. Adaptive simulations are nearly identical
because all tetrahedral edges quickly become quadratic.

much. Our approach does require the step of determining the de-
gree of the elements and a bit of care in dealing with the changing
nonzero structure and constrained control points when assembling
the global system matrix. There are also differences in the size of
things. We deal with 30 × 30 matrices instead of 12 × 12. While
such computations are more time consuming, they are not concep-
tually any more difficult. Consequently, we believe an implementa-
tion of our approach is only slightly more difficult than linear finite
elements.

3.7 Quadratic Rest Shapes

It is also possible to simulate some objects that have nonlinear rest
shapes, such as mechanical parts modeled using Computer Aided
Design (CAD) software or objects modeled using maya. While au-
tomatic volumetric meshing of such objects is an unexplored prob-
lem, simulation with such meshes is relatively straightforward.

We now discuss computation of the stiffness matrices in the case
of quadratic rest shapes. While the β matrices in Equation (10) are
constant for linear rest shapes, for nonlinear rest shapes they vary
over the element and cannot be taken out of the integral. Conse-
quently, we must resort to numerical quadrature. Specifically, at a
given quadrature point we form the matrix ∂u/∂α and invert it.
We then multiply the relevant terms (see Equation (10)) from β
and the derivatives of the Bernstein polynomials (which are sums
of barycentric coordinates). The result is weighted by the determi-
nant of ∂u/∂α to account for the volume of the rest pose. The
volume of the element is ∫

E

det

(
∂u

∂α

)
. (15)

We experimented with a variety of quadrature schemes. Simple
Monte Carlo techniques did not work, even for linear elements.
We were generally successful with several other rules including the
Keast Rule with 45 points [Burkardt 2007], the Newton Cotes rule
with 84 points [Burkardt 2007], and the 46-point rule developed by
Zhang and colleagues [2009]. All achieved similar results, work-

ing on most, but not all, of the cases that we tested. For highly
nonlinear rest poses, the polynomial approximation that underlies

Fig. 5: An exam-
ple where numerical
quadrature fails to com-
pute accurate system
matrices.

numerical quadrature is a very poor
approximation of the inverse poly-
nomial function we wish to inte-
grate. The result is stiffness ma-
trices that yield implausible be-
havior. It is possible that even
higher-order quadrature could re-
sult in usable system matrices, but
we doubt this is the case un-
der extreme deformations. For ex-
ample, the failure case depicted
in Figure 5 contains partially in-
verted tetrahedra—something that
becomes possible with quadratic
elements.

4. RESULTS AND DISCUSSION

All of our tetrahedral meshes were generated with NET-
GEN [Schöberl 1997]. Collisions were detected and handled using
the relevant sections of El Topo [Brochu and Bridson 2009]. All our
examples used between two and four timesteps per (slow motion)
frame. Unfortunately, El Topo is not really designed to work with
such large timesteps and some artifacts are visible in the resulting
videos.

Linear vs. Quadratic vs. Adaptive Elements. To evaluate the
trade-offs involved in choosing between linear and quadratic ele-
ments we set up several very simple tests, including a bar that is
pinned at one end and allowed to swing under gravity (see Fig-
ure 3), a bar that is twisted (see Figure 4), and a “sculpture” that
is dropped on the ground (see Figure 6). We found that for low-
degree-of-freedom systems quadratic elements perform very favor-
ably, but that as the number of degrees of freedom increases, differ-
ences become difficult to discern. In retrospect this outcome is not
particularly surprising—at the time-scales we care about in com-
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Table I. : Timing Results and Mesh Statistics for the Examples in this Article

simulation nodes tets edges non-0s total force degree build matrix solve collision
Hanging Bar
linear (low res) 41 59 137 1602 0.00141 0.000154 — 0.000157 0.000467 —
linear (mid res) 154 313 608 6858 0.00751 0.00080 — 0.00089 0.00355 —
linear (refined) 178 472 801 8811 0.0102 0.00124 — 0.00126 0.00516 —
quadratic (lowres) 41 59 137 15318 0.00854 0.000252 — 0.00087 0.00588 —
adaptive A 41 59 137 9915 0.00726 0.000286 5.78e-05 0.00106 0.00407 —
adaptive B 41 59 137 6560 0.00589 0.000297 6.36e-05 0.00097 0.00272 —
adaptive C 41 59 137 3787 0.00384 0.000266 5.35e-05 0.00054 0.00143 —
overhead 41 59 137 1602 0.00283 0.00023 4.54e-05 0.00016 0.00084 —
quadratic (refined) 178 472 801 102366 0.101 0.00197 — 0.00679 0.0847 —
very hires 6341 30208 38980 407889 1.5 0.0759 — 0.0816 1.25 —
Twisting Bar
linear (low res) 41 59 137 1602 0.0262 0.000553 — 0.000452 0.000634 0.0236
linear (mid res) 123 242 477 5400 0.0398 0.00263 — 0.00226 0.00361 0.0288
linear (refined) 178 472 801 8811 0.0483 0.00382 — 0.00335 0.00608 0.0321
quadratic (lowres) 41 59 137 15318 0.0205 0.000821 — 0.00242 0.00704 0.00847
Fin 2740 8705 13645 85736 1.66 0.0713 0.00697 0.212 0.804 0.428
Spirals 4848 7116 16776 155727 8.14 0.0682 0.00736 0.171 6.12 1.38
Chickens (adaptive) 4850 13125 22325 78356 3.45 0.2088 0.02511 0.597 1.716 —
Chickens (quadratic) 4850 13125 22325 114219 4.08 0.1992 — 0.585 2.454 —
Chickens (linear) 4850 13125 22325 9783 0.744 0.132 — 0.1188 0.1452 —

These are as measured on a late 2012 iMac with a 3.4 GHz Core i7 processor and 32GB of memory. From left to right: total nodes, total
tetrahedra, total edges, average nonzero entries in the global system matrix2, total time in seconds per frame, time spent computing elastic
and damping forces (including polar decomposition), time spent choosing degree and adjusting simulation variables to deal with constrained
edges, time spent assembling the global system matrix, time spent solving the linear system, time spent performing collision detection. The
adaptive simulations grow increasingly aggressive in their linearization. The overhead row corresponds to an adaptive simulation with an
infinite threshold for raising the degree (thus, the motion is identical to a linear simulation and the cost compared to the linear (low res) row
gives the additional cost of running an adaptive simulation)

puter graphics, volumetric elastic effects are fairly low resolution.
This fact has been exploited by numerous researchers who work
with model reduction techniques (see, e.g., James and Pai [2002],
Hauser et al. [2003], and Barbič and James [2005]) or embed
high-resolution geometry in low-resolution simulation meshes (see,
e.g., Capell et al. [2002], Sifakis et al. [2007], and Wojtan and
Turk [2008]).

Conversely, we found that as resolution increases the advantages
of adaptive elements over quadratic elements become more signifi-
cant. Again this trend is not surprising; at higher resolutions defor-
mation is better captured by linear elements. As seen in Table II,
for very coarse models adaptivity saves about 10% of the running
time, while in the “VeryFine” example adaptivity shaves nearly a
quarter of the running time off the quadratic case, with much of
the savings coming from the matrix solve. Computing forces takes
longer in the adaptive examples due to slower convergence of the
polar decompositions. In the included examples, we were unable to
see differences between the adaptive and quadratic examples. More
aggressive adaptivity produced high-quality results at lower cost,
but the results were distinguishable from the fully quadratic simu-
lations. Of course, as is evident in the hanging bar examples, over-
aggressive adaptivity achieves impressive runtimes, but degrades
animation quality.

2Because each object stores its own global system matrices, this number is
an average over all timesteps and objects in the scene.

Quadratic elements are clearly superior to linear elements in cost
per degree of freedom. For linear elements, increasing the number
of degrees of freedom requires increasing the number of elements,
which leads to more polar decompositions and greater complex-
ity in filling in the global system matrix. Hierarchically refining a
tetrahedral mesh by splitting every edge yields the same number of
degrees of freedom as using quadratic elements, but generates eight
times as many elements. In addition to more polar decompositions,
storing the element stiffness matrices for this refined mesh also re-
quires more storage than the coarser quadratic mesh. At higher res-
olutions, our adaptive elements are able to focus computation on
interesting regions of the simulation, at the cost of more complex
force computations and global matrix multiplies, as can be seen by
comparing the overhead row to the linear (low-res) row.

The example of the helices (see Figure 1) contains elements with
nonlinear rest shapes obtained by setting the rest pose to the end
result of a previous simulation using quadratic elements. The ex-
ample with 25 rubber chickens (see Figure 7) demonstrates em-
bedding high-resolution surface meshes in coarse adaptive-degree
finite-element meshes. In this example the chickens collide with
scene geometry, but self-collisions and inter-object collisions were
disabled to maintain stability and a reasonable timestep.

Mass Lumping. We performed experiments with and without
mass lumping. We found that mass lumping did result in differ-
ent motion than the full mass matrix (integrals of the products of
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Table II. : Timing Results and Mesh Statistics for the Sculpture Examples

simulation nodes tets edges non-0s total force degree build matrix solve collisions
Quadratic
Coarse 124 268 519 62784 0.0281 0.00123 — 0.00396 0.00836 0.00932
Moderate 213 504 933 115155 0.0547 0.00235 — 0.00764 0.0196 0.016
Fine 505 1360 2354 299241 0.162 0.00657 — 0.0218 0.0684 0.0421
VeryFine 1851 6853 9979 1369854 0.97 0.0388 — 0.146 0.593 0.0988
Adaptive
Coarse 124 268 519 45795 0.026 0.00125 0.00018 0.00386 0.00624 0.00921
Moderate 213 504 933 82452 0.05 0.0025 0.00033 0.0074 0.0143 0.0162
Fine 505 1360 2354 192812 0.142 0.00789 0.00107 0.0219 0.0449 0.0425
VeryFine 1851 6853 9979 688908 0.736 0.0467 0.00707 0.139 0.346 0.101
Linear
Coarse 124 268 519 5787 0.0133 0.00078 — 0.00074 0.00064 0.00906
Moderate 213 504 933 10314 0.0233 0.00147 — 0.00138 0.00137 0.0161
Fine 505 1360 2354 25731 0.0557 0.00391 — 0.00371 0.00475 0.0361
VeryFine 1851 6853 9979 106470 0.204 0.0197 — 0.0205 0.0286 0.108

From left to right: nodes in the mesh, tetrahedra in the mesh, edges in the mesh, nonzero entries in the global system matrix (average
over all timesteps), total time in seconds per frame, time spent computing elastic and damping forces (including polar decomposition), time
spent choosing degree and adjusting simulation variables to deal with constrained edges, time spent assembling the global system matrix,
time spent solving the linear system, time spent performing collision detection. The VeryFine quadratic and adaptive simulations required a
smaller timestep (20 steps per frame) than the others (10 steps per frame) to remain stable.

Linear Quadratic

C
oarse

M
oderate

Fine
VeryFine

Adaptive

Fig. 6: A sculpture model dropped on the ground with various mesh reso-
lutions and both linear and quadratic elements. Sculpture model from the
NETGEN distribution.

pairs of basis functions), and that these changes were most notice-
able in coarse simulations. However, the full mass matrix resulted
in substantially higher cost because the full mass matrix results in a
significantly worse conditioning. This effect was more pronounced
for the quadratic elements, where the mass was spread to more off-
diagonal entries, than for linear elements. Consequently, all of our
results used the lumped mass formulation.

Limitations and future work. There are many interesting direc-
tions for future work. One obvious question we would like to an-
swer is whether there is any benefit to using cubic or higher-order

Fig. 7: Twenty-five rubber chickens navigate obstacles. Rubber chicken
model courtesy of Yong Wan.

elements. Such elements are significantly more complex. First, cu-
bic tetrahedra have 20 control points and 60 degrees of freedom.
The resulting stiffness matrices have 1830 unique elements. Such
matrices would require nearly 20KB per element, not a prohibitive
cost on modern computers, but not trivial either. Additionally, while
our additional control points are easily constrained by edge end-
points, constraining the control points of cubic elements is more
involved. This fact, in part, explains the popularity of the hierar-
chical Lagrange polynomials in high-order methods. An additional
direction that may prove fruitful is the combination of high-order fi-
nite element with discontinuous Galerkin methods [Kaufmann et al.
2009]. Such methods are quite popular in other fields of engineer-
ing [Hesthaven and Warburton 2007]

We would also like to explore using our adaptive framework for
other types of deformable body simulation, such as fracture and
elastoplasticity. In the case of fracture, the need to create new el-
ements would not allow us to preallocate the system matrix at the
start of the simulation and may also void some of the advantage we
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gain from precomputing the per-element stiffness matrices. In the
case of elastoplasticity, plastic deformation changes the entries in
theβmatrices and also makes our precomputation less of an advan-
tage. However, the integrals of the Bernstein polynomials are taken
over the canonical tetrahedron and are the same for all elements.
Therefore, we could avoid storing the per-element stiffness matri-
ces and instead compute them on-the-fly. While this will surely in-
crease the number of flops per timestep, it will also dramatically
reduce storage.

One limitation of our implementation is the lack of adaptive
timestepping, which we consciously decided not to include because
we felt the inherent complexity of varying timestep size would ob-
scure timing results in our experiments. Another limitation, men-
tioned earlier, is that streaming of element stiffness matrices during
force computation results in a significant number of cache misses,
though the rest of our computations demonstrate excellent cache
behavior. It is possible that using a more structured mesh, such as
those that result from isosurface stuffing [Labelle and Shewchuk
2007], would improve performance by limiting the number of dis-
tinct element shapes and unique element stiffness matrices.

In summary, we have explored the use of quadratic Bézier tetrahe-
dra for computer animation of deformable bodies. We have inte-
grated quadratic and linear elements into an adaptive simulation
framework and we have demonstrated the first computer graph-
ics animation of elastic bodies with nonlinear rest shapes. Our
quadratic elements have clear advantages over linear elements, es-
pecially when working with very coarse simulation meshes. We
expect our quadratic elements to find widespread usage when com-
bined with high-resolution embedded surfaces and our adaptive el-
ements to be popular for mid-scale simulation.
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