Final Exam Study Guide

1 Balanced BSTs (Chapter 19)
- Rotations
 - Single Rotations
 - Double Rotations
 - Inner vs. Outer cases
- AVL Trees
 - Recursive Definition
 - Insertion
- Red-Black Trees
 - Definition
 - Top-Down insertion
 - Top-Down deletion
- AA trees
 - Definition
 - Split and Skew

2 Spatial Data Structures
- Regular Grids
- Quadtrees
- KD-trees
 - basic structure
 - findMin/findMax
 - nearest neighbor search
 * Storing partial results - best so far
 * pruning - reduce search space by eliminating subtrees
 * traversal order - visit most promising subtrees first
 - building a balanced tree
- BSP-trees

3 Transformations
- Translation
- Scale
- Rotation
- Shear
- Linearity
- Composing transformations
- OpenGL matrix stack
- gluLookAt()

4 Lighting/Shading
- Diffuse/Lambertion
- Specular
- Ambient
- Flat vs. Smooth
- Directional vs. Point Light

5 Heaps (Chapter 21)
- Heap order property
- Storage (in an array)
- Insertion/Deletion
- Heapify/BuildHeap

6 Hash Tables (Chapter 20)
- Hash Functions
- Collisions and Collision Handling
 - Linear Probing
– Quadratic Probing (including what is required to ensure that items can always be inserted)
– Separate Chaining

7 Graphs (Chapter 14)

• Definitions
 – Vertices/nodes
 – Edges/arcs
 – Directed vs. Undirected
 – Directed acyclic graph
 – path
 – path length
 – edge cost/weight
 – simple path
• Representation
 – Adjacency Matrix
 – Adjacency List
• Algorithms
 – Breadth First Search
 – Depth First Search
 – Topological Sort
 – Single-Source Shortest paths
 * Unweighted, positive weighted (Dijkstra’s Algorithm), negative weighted
 – Strongly Connected Components
 – Minimum Spanning Trees (Kruskal’s and Prim’s algorithms)

8 Old Stuff

8.1 LinkedList (Chapter 17)

• insert/delete, updating references

8.2 Algorithm Analysis (Chapter 5)

• Definitions of O, Ω, Θ, o, ω, θ
• finding running times of algorithms

8.3 Recursion (Chapter 7)

• Basic recursion concepts
• Base case
• Inductive hypothesis
• Divide and Conquer Approach
• Pitfalls
• Dynamic Programming

8.4 Sorting (Chapter 8)

• BubbleSort
• InsertionSort
• MergeSort
• QuickSort

8.5 Stacks and Queues (Chapter 16)

• Implementation with Arrays and LinkedLists
• advantages and disadvantages

8.6 Trees (Chapter 18)

• Structure and definitions
• depth, height, size, parent, child, ancestor, descendant, leaf, path, path length
• traversals (inorder, preorder, postorder, level-order)

8.7 Binary Search Trees (Chapter 19)

• Definition
• insertion/removal
• best-case/worst-case running times