• Arc-length Reparameterization
 – Adaptive Gaussian Quadrature for estimating arc length
 – Mapping from frame number to arc length to parameter value (i.e. computing $u(s(f))$).

• Interpolation
 – Interpolation vs. Approximation
 – Continuity
 – Global vs. Local Control
 – Hermite, Catmull-Rom, and B-splines

• Representing and Interpolating Orientations
 – Rotation Matrices
 – Fixed Angle
 – Euler Angle
 – Axis and Angle
 – Quaternion
 – Slerp
 – Qlerp

• Ease-in/Ease-out
 – Monotonic curves don’t go backwards in time
 – Continuity ensure there is not a jump
 – Sine interpolation
 – Using sineusoidal pieces for acceleration and deceleration
 – Cubic polynomial
 – Parabolic (constant acceleration)

• Paths
 – Frenet Frame
 – Camera path following (center of interest)
 – Smoothing paths

• Kinematic Chains and Inverse Kinematics
 – Kinematic hierarchies
 – Reduced Coordinates
- Forward kinematics (descending the hierarchy)
- Inverse kinematics
- Jacobian (what it is, how entries are computed)
- Pseudo-inverse, Jacobian transpose (gradient descent)
- Cyclic coordinate descent
- Adding secondary constraints in the null-space of the Jacobian

• Motion Capture
 - The motion capture process
 - Camer calibration
 - Actor calibration
 - T-pose, motorcycle pose, range of motion
 - Capturing 3D positions
 - Computing trajectories
 - Skeleton template
 - Skeleton Fitting
 - Editing motion capture data: Warping, retargeting, graphs

• Simulation and Optimization
 - Lagrangian mechanics
 - Featherstone dynamics
 - Control systems
 - Finite state machines
 - Control laws and goal joint angles
 - Proportional derivative controller
 - Constrained optimization
 - Energy functions (e.g. minimize joint torques)
 - The importance of contact