Today

- Motion Capture
Motion Capture

- Record motion from physical objects
- Use motion to animate virtual objects

Simplified Pipeline:

1. Setup and calibrate equipment
2. Record performance
3. Process motion data
4. Generate animation
Basic Pipeline

From Rose, et al., 1998
What types of objects?

- Human, whole body
- Portions of body
- Facial animation
- Animals
- Puppets
- Other objects
Capture Equipment

- Passive Optical
 - Reflective markers
 - IR (typically) illumination
 - Special cameras
 - Fast, high res., filters
 - Triangulate for positions

Images from Motion Analysis
Capture Equipment

- **Passive Optical Advantages**
 - Accurate
 - May use many markers
 - No cables
 - High frequency

- **Disadvantages**
 - Requires lots of processing
 - Expensive systems
 - Occlusions
 - Marker swap
 - Lighting / camera limitations
Capture Equipment

- **Active Optical**
 - Similar to passive but uses LEDs
 - Blink IDs, no marker swap
 - Number of markers trades off w/ frame rate

Phoenix Technology

Phase Space
Capture Equipment

- **Magnetic Trackers**
 - Transmitter emits field
 - Trackers sense field
 - Trackers report position and orientation

May be wireless

Control

May be wireless
Capture Equipment

- **Electromagnetic Advantages**
 - 6 DOF data
 - No occlusions
 - Less post processing
 - Cheaper than optical

- **Disadvantages**
 - Cables
 - Problems with metal objects
 - Low(er) frequency
 - Limited range
 - Limited number of trackers
Capture Equipment

- Electromechanical

Analogus
Capture Equipment

- Puppets
Performance Capture

○ Many studios regard *Motion* Capture as evil
 ○ Synonymous with low quality motion
 ○ No directive / creative control
 ○ Cheap

○ *Performance* Capture is different
 ○ Use mocap device as an expressive input device
 ○ Similar to digital music and MIDI keyboards
Manipulating Motion Data

- Basic tasks
 - Adjusting
 - Blending
 - Transitioning
 - Retargeting

- Building graphs
Nature of Motion Data

Subset of motion curves from captured walking motion.

Witkin and Popovic, 1995
Adjusting

- IK on single frames will not work

Gleicher, SIGGRAPH 98
Adjusting

- Define desired motion function in parts

\[m(t) = m_0(t) + d(t) \]
Adjusting

- Select adjustment function from “some nice space”
 - Example C2 B-splines
- Spread modification over reasonable period of time
 - User selects support radius
Adjusting

IK uses control points of the B-spline now

Example:
- position racket
- fix right foot
- fix left toes
- balance

Witkin and Popovic SIGGRAPH 95
Adjusting

What if adjustment periods overlap?

Witkin and Popovic SIGGRAPH 95
Blending

- Given two motions make a motion that combines qualities of both

\[m_\alpha(t) = \alpha m_a(t) + (1 - \alpha) m_b(t) \]

- Assume same DOFs
- Assume same parameter mappings
Blending

- Consider blending *slow-walk* and *fast-walk*

Bruderlin and Williams, SIGGRAPH 95
Blending

- Define timewarp functions to align features in motion

Normalized time is w
Blending

- **Blend in normalized time**

\[m_\alpha(w) = \alpha m_a(w_a) + (1-\alpha) m_b(w_b) \]

- **Blend playback rate**

\[\frac{dt}{dw} = \alpha \frac{dt}{dw_a} + (1-\alpha) \alpha \frac{dt}{dw_b} \]
Blending

- Blending may still break features in original motions

- Touchdown for Run
- Touchdown for Walk

Blend misses ground and floats
Blending

- Add explicit constraints to key points
 - Enforce with IK over time

Touchdown for Run

Touchdown for Walk
Blending / Adjustment

- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
 - Add quality metric on adjustment
 - Minimize accelerations / torques
 - Explicit smoothness constraints
 - Other criteria...
Multivariate Blending

- Extend blending to multivariate interpolation

\[m(w) = \sum_{i} \alpha_i(w) m_i(w) \]

\[\sum_{i} \alpha_i(w) = 1 \]
Multivariate Blending

- Extend blending to multivariate interpolation

Use standard scattered-data interpolation methods
Transitions

- Transition from one motion to another

Perform blend in overlap region
Cyclification

- Special case of transitioning
- Both motions are the same
- Need to modify beginning and end of a motion simultaneously
Transition Graphs

![Transition Graphs Diagram]
Motion Graphs

- Hand build motion graphs often used in games
 - Significant amount of work required
 - Limited transitions by design
- Motion graphs can also be built automatically
Motion Graphs

- **Similarity metric**
 - Measurement of how similar two frames of motion are
 - Based on joint angles or point positions
 - Must include some measure of velocity
 - Ideally independent of capture setup and skeleton

- **Capture a “large” database of motions**
Motion Graphs

- Compute similarity metric between all pairs of frames
 - Maybe expensive
 - Preprocessing step
 - There may be too many good edges

Walking, frame i

Clustering

Arikan and Forsyth, 2002
Random walks

- Start in some part of the graph and randomly make transitions
- Avoid dead ends
- Useful for “idling” behaviors

Transitions

- Use blending algorithm we discussed
Motion graphs

- Match imposed requirements
 - Start at a particular location
 - End at a particular location
 - Pass through particular pose
 - Can be solved using dynamic programing
 - Efficiency issues may require approximate solution
 - Notion of “goodness” of a solution
Suggested Reading

- *Fourier principles for emotion-based human figure animation*, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95

- *Motion signal processing*, Bruderlin and Williams, SIGGRAPH 95

- *Motion warping*, Witkin and Popovic, SIGGRAPH 95

- *Efficient generation of motion transitions using spacetime constrains*, Rose et al., SIGGRAPH 96

- *Retargeting motion to new characters*, Gleicher, SIGGRAPH 98

Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.
- Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.
- Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.
- Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.