
Basic Ray Tracing

CMSC 435/634

Projections

�2

axis-aligned
orthographic

orthographic

perspective oblique

Computing Viewing Rays

u
e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

Ray-Triangle Intersection

boolean raytri (ray r, vector p0, p1, p2, interval [t0,t1])
{

compute t
if ((t < t0) or (t > t1))

 return (false)
compute γ
if ((γ < 0) or (γ > 1))

 return (false)
compute β
if ((β < 0) or (β+γ > 1))

 return (false)
 return true
}

Point in Polygon?
• Is P in polygon?
• Cast ray from P to

infinity
– 1 crossing = inside
– 0, 2 crossings = outside

Point in Polygon?
• Is P in concave

polygon?
• Cast ray from P to

infinity
– Odd crossings = inside
– Even crossings =

outside

What Happens?

Raytracing Characteristics
• Good
– Simple to implement
– Minimal memory required
– Easy to extend

• Bad
– Aliasing
– Computationally intensive

• Intersections expensive (75-90% of rendering time)
• Lots of rays

Basic Illumination Concepts
• Terms
– Illumination: calculating light intensity at a point (object

space; equation) based loosely on physical laws
– Shading: algorithm for calculating intensities at pixels

(image space; algorithm)
• Objects
– Light sources: light-emitting
– Other objects: light-reflecting

• Light sources
– Point (special case: at infinity)
– Area

A Simple Model
• Approximate BRDF as sum of
–A diffuse component
–A specular component
–A “ambient” term

�10

+ =+

Diffuse Component
• Lambert’s Law
– Intensity of reflected light proportional to

cosine of angle between surface and incoming
light direction
–Applies to “diffuse,” “Lambertian,” or “matte”

surfaces
– Independent of viewing angle

• Use as a component of non-Lambertian surfaces

�11

Diffuse Component

�12

kdI(l̂ · n̂)

max(kdI(l̂ · n̂),0)

Diffuse Component
• Plot light leaving in a given direction:

• Plot light leaving from each point on surface

�13

Specular Component
• Specular component is a mirror-like reflection
• Phong Illumination Model
–A reasonable approximation for some surfaces
–Fairly cheap to compute

• Depends on view direction

�14

Specular Component

�15

ksI(r̂ · v̂)p

ksImax(r̂ · v̂,0)p
L

R
V

N

Specular Component
• Computing the reflected direction

�16

r̂=�l̂+2(l̂ · n̂)n̂

n

l

h

ω

e

n

l r

-l

θ n cos θ

n cos θ

ĥ=
l̂+ v̂

||l̂+ v̂||

Specular Component
• Plot light leaving in a given direction:

• Plot light leaving from each point on surface

�17

Specular Component
• Specular exponent sometimes called “roughness”

�18

n=1 n=2 n=4

n=8

n=256n=128n=64

n=32n=16

Ambient Term
• Really, its a cheap hack
• Accounts for “ambient, omnidirectional light”
• Without it everything looks like it’s in space

�19

Summing the Parts

• Recall that the are by wavelength
–RGB in practice

• Sum over all lights
�20

R= kaI+ kdImax(l̂ · n̂,0)+ ksImax(r̂ · v̂,0)p

k?

+ =+

�21

Shadows
• What if there is an object between the surface

and light?

Ray Traced Shadows
• Trace a ray
– Start = point on surface
– End = light source
– t=0 at Surface, t=1 at Light
– “Bias” to avoid surface acne

• Test
– Bias ≤ t ≤ 1 = shadow
– t < Bias or t > 1 = use this light

The Dark Side of the Trees - Gilles Tran,
Spheres - Martin K. B.

Mirror Reflection

�23

�24

Ray Tracing Reflection
• Viewer looking in direction d sees whatever the

viewer “below” the surface sees looking in
direction r

• In the real world
– Energy loss on the bounce
– Loss different for different colors

• New ray
– Start on surface, in reflection direction

Ray Traced Reflection
• Avoid looping forever
– Stop after n bounces
– Stop when contribution to pixel gets too small

Specular vs. Mirror Reflection

Combined Specular & Mirror
• Many surfaces have both

Refraction

Top

Front

Calculating Refraction Vector
• Snell’s Law

• In terms of

• term

Calculating Refraction Vector
• Snell’s Law

• In terms of

• term

Calculating Refraction Vector
• Snell’s Law

• In terms of

• In terms of and

Alpha Blending
• How much makes it through
• α = opacity
– How much of foreground color 0-1

• 1-α = transparency
– How much of background color

• Foreground*α + Background*(1-α)

Refraction and Alpha
• Refraction = what direction
• α = how much
– Often approximate as a constant
– Better: Use Fresnel

– Schlick approximation

Full Ray-Tracing
• For each pixel
– Compute ray direction
– Find closest surface
– For each light

• Shoot shadow ray
• If not shadowed, add direct illumination

– Shoot ray in reflection direction
– Shoot ray in refraction direction

Dielectric

if (p is on a dielectric) then
r = reflect (d, n)
if (d.n < 0) then

refract (d, n , n, t)
c = -d.n
kr = kg = kb = 1

else
kr = exp(-alphar * t)
kg = exp(-alphag * t)
kb = exp(-alphab * t)
if (refract(d, -n, 1/n t) then

c = t.n
else

return k * color(p+t*r)
R0 = (n-1)^2 / (n+1)^2
R = R0 + (1-R0)(1 - c)^5
return k(R color(p + t*r) + (1-R)color(p+t*t)

Distribution Ray Tracing

�39

Distribution Ray Tracing
• Anti-aliasing
• Soft Shadows
• Depth of Field
• Glossy Reflection
• Motion Blur

• Turns Aliasing into Noise

�40

Sampling

�41

Soft Shadows

�42

Depth of Field

Soler et al., Fourier Depth of Field, ACM TOG v28n2, April 2009

Pinhole Lens

Lens Model

Real Lens
Focal Plane

Lens Model
Focal Plane

Ray Traced DOF
• Move image plane out to focal plane
• Jitter start position within lens aperture
– Smaller aperture = closer to pinhole
– Larger aperture = more DOF blur

Glossy Reflection

�49

Motion Blur
• Things move while the shutter is open

Ray Traced Motion Blur
• Include information on object motion
• Spread multiple rays per pixel across time

