
IEEE TVCG 1

Multiphase Flow of Immiscible Fluids on
Unstructured Moving Meshes
Marek K. Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund,

Brian Bunch Christensen, J. Andreas Bærentzen, and Robert Bridson

Abstract—In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving
meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves
with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the
context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between
fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches
the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same
cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume
approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation
as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order
surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU.
We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for
performance optimization.

Index Terms—

F

1 INTRODUCTION

In this paper, we present a finite element method
for animating multiphase flow of immiscible liquids
(i.e. non-mixing liquids, such as water and oil, see
Figure 1). Our approach is based on the Lagrangian
deformable simplicial complex (DSC) method, previ-
ously used for topology-adaptive deformable inter-
face tracking [1], [2], which trades the apparent sim-
plicity of the level set method for robustness and sup-
port of multiple phases, as well as offering an unstruc-
tured, moving computational grid. Each element in
the mesh is assigned a single material and interfaces
are composed of faces in the DSC. The DSC moves
with the fluid in a Lagrangian fashion and a variety
of mesh optimization operations improve element
quality and avoid element inversion. We formulate
the solution of the Navier-Stokes equations in terms
of a quadratic optimization problem, which accounts
for and couples all terms: incompressibility, viscosity,
surface energy and arbitrary solid constraints.

Our approach builds on the work of Misztal et

• M. K. Misztal is with the Niels Bohr Institute, University of Copen-
hagen, Denmark.

• K. Erleben is with the Department of Computer Science, University of
Copenhagen, Denmark.

• A. Bargteil is with the School of Computing, University of Utah, USA.
• J. Fursund is with Industrial Light & Magic.
• B. Bunch Christensen is with the Alexandra Institute, Denmark.
• J. A. Bærentzen is with the Department of Informatics and Mathemat-

ical Modelling, Technical University of Denmark.
• R. Bridson is with the Department of Computer Science, University

of British Columbia, Canada.

al. [3] and Erleben et al. [4], who developed a finite
element approach to fluid simulation and character-
ized the solution to the Navier-Stokes equations as a
quadratic optimization problem. Our main contribu-
tion is the extension of these techniques to multiphase
flow. Furthermore, we have addressed numerous im-
plementation issues, essential for significant improve-
ment of the accuracy of the method and reduction of
its time complexity. Our contributions include:

• deriving the formulation of and implementing
the second-order surface energy approximation
(Section 3.3);

• deriving and implementing pressure stabiliza-
tion through finite volume discretization of the
pseudo-compressibility equation (in contrast to
the previously used pressure stabilization scheme
from Misztal et al. [3], used by Erleben et al. [4],
which is not physically correct; see Section 3.4);

• simplifying the formulation of the solid boundary
conditions in the model (Section 3.5);

• adapting the method so that it supports multiple,
immiscible fluids (Section 3.6).

• designing a preconditioner, which allows us to
employ a GPU-based, iterative solver (Section 4);

• suggesting ways to optimize the performance of
the DSC method (Section 3.1.1) and the matrix
assembly step (Section 5.5);

In contrast to regular grid and level set based
approaches, our method offers several significant ad-
vantages: the Lagrangian nature of our mesh avoids
numerical diffusion that leads to volume loss and



IEEE TVCG 2

Fig. 1. Multiple, immiscible liquids with different viscosity coefficients and surface tension densities splashing on
the bottom of a container. Observe that the simulation has no problem dealing with thin sheets.

excessive perceived viscosity; the unstructured tetra-
hedral mesh allows us to trivially handle arbitrary,
non-grid-aligned solid boundaries, and the explicit
representation of interfaces as faces in the mesh al-
lows for accurate treatment of surface tension. In
the context of multiphase flow we wish to highlight
one additional advantage: the Lagrangian nature of
our discretization allows us to optimally track the
interfaces between multiple fluids. There is no guess-
work in determining what fluids are where and the
simulation is greatly simplified because each element
is occupied by a single material. This also allows us
to assign different values of surface energy density
to all pairs of materials. We present several examples
of fluid simulations generated using our method, as
well as the results of various performance tests and
parameter studies.

2 RELATED WORKS

The literature concerning fluid simulation in com-
puter graphics is rich, and a proper review of all
the state-of-the-art methods would require a study
of its own. Most methods are based on regular grids
and we refer to [5], [6], [7], [8], [9], [10], [11], [12],
[13] for details. The literature on multiphase flow is
sparser. Losasso et al. [14] first demonstrated multiple
interacting fluids. They used multiple particle level
sets to track the various interfaces and introduced av-
eraging rules for handling cells occupied by more than
one material. Kim [15] expanded on this approach by
introducing regional level sets [16].

Another big group of methods is based on
smoothed-particle hydrodynamics [17] and the work
by Solenthaler et al. [18] is of particular interest here
since it is able to handle multiple materials robustly.
In contrast, our method uses an unstructured grid.
The work in computer graphics on fluid solvers based
on unstructured meshes is sparse. Early work used
static unstructured meshes [19], [20]. Dynamic meshes
with limited deformation (to preserve mesh quality)
were demonstrated by Feldman et al [21]. When mesh
quality can no longer be preserved, an entirely new
mesh can be generated [22], [23], [24], [25] though this
involves a great deal of computation and can lead to

undesirable artifacts, such as the smoothing of simula-
tion variables. Alternatively, local mesh improvement
operations [3], [26] are computationally more efficient
and minimize artifacts. Solid boundaries and two-
way coupling have been touched upon [19], [22]. The
preferred method for dealing with advection has been
the semi-Lagrangian advection method [19] and its
generalization to deforming meshes [21] which has
been applied in many works [22], [24], [27], [28].

The finite volume method is a popular choice for
fluid simulation on unstructured meshes [19], [20],
[21], [22], [28]. In particular, Elcott et al. [20] demon-
strate a number of desirable, even surprising, prop-
erties for incompressible flow simulation with their
use of discrete exterior calculus. In contrast, the finite
element method [23], [25], [26] is often preferred for
plastic and elastic objects. However, its application
for fluids is sparse [3], [4]. Mimicking regular grids,
many tetrahedral schemes are based on staggered
locations of simulation variables [19], [20], [21], [28].
Here the face centers often store the normal velocities
and volume centers store pressure values. While this
approach has a number of nice properties [20], they
have the significant drawback that reconstruction of
the full-dimensional velocity field is quite expensive.
In contrast, while we do store pressures at the centers
of our elements, the velocity field is stored as full-
dimensional velocity vectors at the nodes of our mesh.

3 FLUID SIMULATION METHOD

In this section we present the complete, finite ele-
ment discretization of the incompressible fluid motion
equations and its formulation in terms of a quadratic
optimization problem, which allows us to accurately
incorporate non-linear terms (such as surface tension
forces) into the model. We also discuss the significant
implementation details required for a robust perfor-
mance: pressure stabilization (in the form of pseudo-
compressibility) and preconditioning, which allows
us to improve the performance by employing a fast,
GPU-based, iterative solver. Finally, we describe how
to handle the fluid’s interactions with arbitrary solid
walls, and how to adapt the method to handle several
interacting, immiscible fluids.



IEEE TVCG 3

Fig. 2. A 2D example of an interface representation
in the DSC method. The embedding mesh can be re-
tessellated in order to accommodate vertex displace-
ment and produce changes in the topology of the
interface.

3.1 The Deformable Simplicial Complex Method

Our FEM computations are performed on an unstruc-
tured, tetrahedral grid, which is also used by the
deformable simplicial complex (DSC) method [1], [2] for
tracking the fluid’s free surface. The DSC method is a
recent, Lagrangian method for topology-adaptive de-
formable interface tracking. It represents the interface
explicitly as a piecewise surface (triangle mesh), while
the whole embedding space is discretized as well – as
a tetrahedral mesh. All tetrahedra are labeled inside
or outside according to their location relative to the
interface (the 2D case is shown in Figure 2). Further-
more, they conform to the interface, in the sense that
each interface triangle is a common face shared by
one inside tetrahedron and one outside tetrahedron.
The interface deformations are produced by iterating
interface vertex displacement according to a given
velocity field, followed by a mesh improvement step.
The main purpose of the mesh improvement step is
the removal of low quality tetrahedra produced dur-
ing vertex advection and reducing the risk of creating
inverted tetrahedra in subsequent deformation steps.

The main advantages of the DSC method in the
context of fluid simulation include: robust topological
adaptivity, low numerical diffusion, available surface
mesh representation, which does not change gratu-
itously between time steps, and the possibility of
representing more than two phases (one can use an
arbitrary number of tetrahedron labels rather than just
two).

3.1.1 The DSC Method in 3D
The outline of the 3D DSC method remains very
similar to that presented in [2] (see Algorithms 1, 2
and 3). However, we have modified some parts of the
algorithm in order to improve the overall performance
of the fluid simulation method.

The initial tetrahedral mesh for the simulation is a
constrained 3D Delaunay triangulation generated us-
ing Tetgen [29]. However, tetrahedral meshes created
this way tend to contain nearly-degenerate tetrahedra,
so in our mesh improvement algorithms we aim at

Algorithm 1 3DDSC(M,u)
{M is a tetrahedral mesh conforming to the interface}
{u is a velocity function for the fluid vertices}

1: t⇐ 0
2: while t < tfinal do
3: insert new Steiner vertices
4: split long interface edges
5: collapse short interface edges
6: for each fluid vertex xi do
7: compute final vertex position x̃i ⇐ xi +ui∆t
8: end for
9: flip interface edges

10: complete⇐ false
11: counter ⇐ 0
12: while not complete or counter < max iter do
13: counter ⇐ counter + 1
14: complete⇐ MoveVerticesStep(M, {x̃i})
15: relabel valid degenerate tetrahedra
16: T ⇐ set of tetrahedra adjacent to vertices

displaced in the previous step
17: smooth all non-interface vertices in T
18: if complete and counter ≡ 0 (mod 4) then
19: ImproveMeshStep(M,T )
20: else
21: smooth all outside vertices
22: reconnection (lines 2-9 in Algorithm 3)
23: remove degenerate tetrahedra
24: remove degenerate faces
25: remove degenerate edges
26: end if
27: end while
28: t⇐ t + ∆t {∆t is a time-step}
29: end while

Algorithm 2 MoveVerticesStep(M, {x̃i})
{{x̃i} is a set of the new positions of the fluid vertices}

1: complete⇐ true
2: for each fluid vertex xi do
3: if ‖xi − x̃i‖ > 0 then
4: compute the intersection t0 of the ray xi + t ·

(x̃i − xi) with the link of the vertex xi

5: if t0 > 1 then
6: xi ⇐ x̃i

7: else
8: move the vertex xi to the intersection

point xi + t0 · (x̃i − xi)
9: complete⇐ false

10: end if
11: end if
12: end for
13: return complete

maximizing the volume-edge ratio quality measure [30],
[31] Q(t) = V (t)

Vrms(t) = 6
√

2V (t)
e3rms

, where V (t) is the
oriented volume of a tetrahedron t and Vrms(t) is
the volume of a regular tetrahedron with the same
root-mean-squared edge length erms as t. This quality
measure is smooth and penalizes all kinds of nearly-
degenerate tetrahedra, including slivers.

In the 3D DSC method we perform both volumetric
and surface mesh improvement using local opera-
tions. The volumetric operations include:



IEEE TVCG 4

Fig. 3. Topological operations (also called flips or swaps) used for mesh reconnection in 3D DSC. Each operation
is performed only if it improves the minimum quality locally.

Algorithm 3 ImproveMeshStep(M,T )

1: smooth all outside vertices in T
2: for each tetrahedron t ∈ T , such that Q(t) < 0.2 do
3: for each non-interface face f of t do
4: attempt to remove f using MFRT and MFR
5: end for
6: for each non-interface edge e of t do
7: attempt to remove e using edge removal
8: end for
9: end for

10: collapse valid non-interface edges

• Mesh quality improvement. Smart Laplacian
smoothing of the non-fluid vertices and optimi-
zation-based smoothing, which moves the vertex
x in a way that maximizes the minimum qual-
ity of its adjacent tetrahedra (this a non-smooth
optimization problem, for the details see [32]).
Optimization-based smoothing is computation-
ally expensive and we only use it if smart Lapla-
cian smoothing fails to improve the minimum
quality Q in the 1-ring of x above 0.05. We
only smooth non-fluid vertices, since arbitrary
displacements of the vertices belonging to the
computational grid leads to numerical diffusion
and inaccuracies.
Reconnection operations (generalizations of the
edge flip in the 2D case): edge remove, multi-face
remove, multi-face retriangulation (shown in Figure
3, for more details see [33], [34], [35]) if they
locally improve the minimum quality. Since the
topological operations are computationally ex-
pensive, we only perform them for tetrahedra of
quality less than 0.2.

• Interface topology changes. Topology changes
occur when vertices from one component of the
interface touch another part of the interface. In
this case the two interface parts will be separated
only by one or more degenerate tetrahedra. Those
tetrahedra can either be re-labelled (switched
from inside to outside, or the other way round)
or removed as a part of the degeneracy removal

(discussed below).
We re-label nearly flat tetrahedron t (quality
lower than qrelabel = 0.02) if it is located between
two parts of an interface. This is a case when the
largest face f of t lies on the interface and the
vertex v opposite to f also lies on the interface
and its orthogonal projection onto f lies within
f ’s hull. In order to improve the interface mesh
we also re-label t if Q(t) < 10qrelabel and the
change of label would decrease the total surface
energy of the interface (acting like “combinatorial
surface tension”).

• Detail Control. Non-interface edges are collapsed
if their endpoints do not lie on the interface or the
DSC mesh boundary and if the collapse does not
locally decrease the minimum quality or if the
quality of any tetrahedra affected by this opera-
tion does not become lower than qcollapse = 0.30.
Rather than introducing Steiner vertices through
non-interface edge splits (as it is done in [2]), we
use an optimization based vertex insertion algo-
rithm similar to the one introduced by Klingner
and Shewchuk [34]. We use a simplified version
of their algorithm which, for any tetrahedron t
with quality Q(t) < 0.2 attempts to replace a star-
shaped set of tetrahedra T containing t, with a
new set of tetrahedra connecting the new vertex
xSteiner with each of the faces on the boundary
of T . We use the center of the smallest sphere
containing t as the initial position of xSteiner, and
the star-shaped set T is determined using a graph
cut optimization algorithm, described in detail in
[34].

• Degeneracy removal. Tetrahedra: if a tetrahe-
dron’s vertices are nearly coplanar (e.g. if the
tetrahedron’s quality is smaller than a value
qmin = 0.01) its largest face is found and a tetra-
hedron removal strategy is chosen accordingly to
the position of its opposite vertex by “flattening”
the tetrahedron and replacing it with a set of 2, 3
or 4 triangles. Faces: if a face contains an angle
smaller than θmin, cos θmin = 0.998, it can be
either a cap or a needle. If the ratio of the longest



IEEE TVCG 5

edge to the second longest edge in the face is
greater than 1.03, the longest edge is split at the
projection of the vertex opposite to it and the
edge connecting the new vertex and the cap tip is
collapsed; otherwise, the face is a needle and the
edge opposite to the smallest angle is collapsed
(both collapses are performed if they produce
a valid mesh). Edges: degenerate non-interface
edges are removed during the edge collapse step.
Degenerate interface edges are removed during
the process of surface energy improvement de-
scribed below.

The free surface of a fluid changes dramatically dur-
ing the simulation and our fluid simulation method
would quickly break down had we not kept the
surface mesh quality sufficiently high. Moreover, the
quality of the embedding tetrahedral mesh depends
on the shape and size of the interface mesh triangles.
We improve the quality of the surface mesh using the
following local operations:

• Surface mesh quality improvement. Null-space
smoothing [36]: moving each interface, manifold
vertex x in the null space of its local quadric
metric tensor. This way the smoothing does not
change the geometry of the interface mesh. We
update the velocity at the each vertex by applying
linear interpolation of the old velocity field (before
smoothing) at the new position of x.
Edge flip of an interface, non-manifold edge e:
performed if e’s adjacent interface triangles do
not fulfill 2D Delaunay criterion, if e is not a fea-
ture edge (measured by the angle θflip between
the normals to its adjacent faces, θflip < 5◦).
Requires performing edge removal (reconnection)
operation in the embedding tetrahedral mesh.

• Detail control. Edge split for an interface edge
e longer than 2.5eavg , where eavg is the average
edge length in the original surface mesh. The
velocity at the new vertex is calculated as the
average of the velocities at the endpoints of e.
Edge collapse for an interface edge e shorter than
ecollapse = 0.75eavg . It is important to keep this
threshold value high, in order to prevent the
mesh size from growing uncontrollably. How-
ever, in order to prevent this operation from
changing the geometry of the interface signifi-
cantly, we have introduced a new criterion (ab-
sent in [2]). For each of two possibilities of col-
lapsing e, we compute the volume difference
they yield. We select the one that yields smaller
absolute volume difference, and if it is less than
0.02e3

collapse we perform the collapse.

An apparent downside of the 3D DSC method is
the number of parameters required to condition the
local mesh improvement operations. In principle, the
method requires fine tuning of those parameters in
order to achieve optimal performance, depending on

Fig. 4. Schematic view of a single iteration of our
fluid simulation method. We begin with an initial ve-
locity field ut respecting the continuity constraint (left).
Then we move the grid according to this velocity field,
advect the velocity values and possibly re-tessellate
the mesh (dotted line) in order to accommodate the
displacements or improve its quality (center). The new
velocity field u∗ might violate the continuity constraint.
In order to fix that, we solve the discretized version of
the Poisson equation and obtain the final velocity field
ut+∆t (right).

the application. While changing their values might
not have a direct influence on the robustness of the
method, it can significantly affect the accuracy and
computation time. On the other hand, this also means
that the user has much control over the method’s
performance and capacity to adjust it in order to
achieve the desirable results.

In summary, we have described the 3D deformable
simplical complex method, adapt for the requirements
of fluid simulation. Our main new contributions to the
method include: the Steiner vertex insertion routine
and the condition for the interface edge collapse.

3.2 Fluid Simulation as a Quadratic Optimization
Problem

We treat the tetrahedra contained in each fluid vol-
ume as conforming, linear elements. We sample the
velocity field u(x, y, z) at each vertex of the mesh
xi, i = 1, . . . , NV , where NV is the total number of
vertices in the mesh. We denote the vector of all ve-
locity samples as u =

[
uT1 uT2 . . . uTNV

]T , where
ui = u(xi). We are using a staggered grid, meaning
that the pressure field is discretized at tetrahedra:
p =

[
p1 p2 . . . pNT

]T , where NT is the num-
ber of elements (tetrahedra) occupied by the fluid.
The optimization-based fluid simulation method is a
fractional step method. In the first step we perform
(forward Euler) vertex advection according to the
current sampled velocity field ut

xt+∆t
i = xti + uti∆t (1)

and we advect the velocity values along with vertices
obtaining an intermediate velocity field u∗ which
might violate the new, discretized continuity con-
straint. We fix that in the second step by solving
the finite-element discretization of the fluid motion
equations in the form of an optimization problem,



IEEE TVCG 6

which determines the final velocity field ut+∆t of the
fluid (the details of the discretization are presented in
Section 3.3)

ut+∆t = arg min
u

1

2
uTAu + uTb (2)

subject to
PTu = 0 (3)

where A accounts for inertia, viscosity and surface
tension, b contains the effect of the advection and
external force densities like gravity, and P is the
gradient operator. The Karush–Kuhn–Tucker (KKT)
conditions for this problem read[

A P
PT 0

]
︸ ︷︷ ︸

K

[
u
λ

]
=

[
−b
0

]
(4)

where λ are the Lagrange multipliers and correspond
to −∆tp — the pressure field multiplied by the time
step size. Observe that solving this problem fully
couples the velocity and pressure fields, unlike the
projection method. The K matrix is named the KKT
matrix and is known to be symmetric indefinite [37].

3.3 Navier-Stokes Equation Discretization
The motion of a Newtonian fluid is governed by the
Navier-Stokes equation,

ρu̇ = −(u · ∇)u +∇ ·T + f , x ∈ Vfluid (5)

where Vfluid ⊂ R3 is the volume of the fluid, ρ is the
mass density, u is the unknown velocity field, and T
is the Newtonian stress tensor:

T = −pI3×3 + µ
(
∇u +∇uT

)
, (6)

where p is the pressure field, µ is the dynamic vis-
cosity coefficient, and f is an external force term (for
example gravity). We assume constant mass density
which yields a continuity constraint in the form of
incompressibility,

∇ · u = 0, x ∈ Vfluid. (7)

Erleben et al. [4] show that the weak formulation of
this system for a tetrahedral mesh with a staggered
grid layout is as follows:

M
∂u

∂t
−Bf −Pp + Du = 0,

PTu = 0,

where f =
[
fT1 fT2 . . . fTNV

]
and

Mij = I3×3

∫
Vfluid

ρφiφjdV,

Bij = I3×3

∫
Vfluid

φiφjdV,

Dij =

∫
Vfluid

µ
(
∇φTi ∇φjI3×3 +∇φi∇φTj

)
dV,

Pjk =

∫
Vk
∇φjdV,

where i, j = 1, 2, . . . , NV , k = 1, 2, . . . , NT and Vk is
the volume of the kth tetrahedron. The shape func-
tions φi : R3 7→ R fulfill the condition

φi(xj) =

{
1 if i = j
0 if i 6= j

(8)

and are piecewise linear over each element, which
allows us to evaluate the matrices above analytically.
We apply the finite difference method to discretize
Equation 8, by substituting ∂u

∂t ≈
1

∆t

(
ut+∆t − u∗

)
and,

by choosing an implicit scheme for stability we obtain
the following system of linear equations

Aut+∆t + b + Pλ = 0, (9)
PTut+∆t = 0, (10)

where λ = −∆tp, A = M + ∆tD, and b = −Mu∗ +
∆tBf . Solving this equation is equivalent to solv-
ing the quadratic optimization problem (Equation 2),
since its first order optimality conditions are equiv-
alent to Equations 9 and 10. We are interested in
this perspective because it allows us to incorporate
nonlinear terms into the model, in particular surface
tension forces. Adding this term in the form of body
forces yields lower accuracy and leads to a stringent
stability time step restriction for surface-tension dom-
inated flows. Instead, we add the surface energy term
U(x) to our objective function

1

2
uTAu + uTb + U(x + ∆tu). (11)

We use a second-order Taylor series approximation
for U(x + ∆tu)

U(x + ∆tu) ≈ U(x) + ∆t∇Uu +
1

2
∆t2uT∇∇Uu,

which leads us to another quadratic optimization
problem in the standard form with

A′ = A + ∆t2∇∇U, (12)
b′ = b + ∆t∇U. (13)

Surface energy is proportional to the free surface
area A of the fluid U(x) = σA(x). The constant of
proportionality σ is called the surface energy density
and it is a material constant with different values on
contact surfaces between each pair of phases (liquid,
gaseous and solid) in the system. In order to evaluate
the gradient and the Hessian of the energy density
(∇U and ∇∇U ), we need to find the gradient and
the Hessian of the area for each interface triangle. We
can find symmetric formulas for those by applying a
Taylor approximation to Heron’s formula for the area
At of a triangle t with vertices xi,xj ,xk. Let us denote
eα = xγ − xβ , where (α, β, γ) is an even permutation
of (i, j, k) and eα = ‖eα‖. Lengthy calculations lead to
the following results

∇αAt =
(e2
α − e2

β + e2
γ)eβ − (e2

α + e2
β − e2

γ)eγ

8At
, (14)



IEEE TVCG 7

and

∇α∇αAt =
2e2
αI− 2eαe

T
α

8At
− (∇αAt) (∇αAt)T

At
,

∇α∇βAt =
(e2
γ − e2

α − e2
β)I− eγe

T
γ + eαe

T
α + eβe

T
β

8At

− (∇αAt) (∇βAt)T

At
,

where ∇α is the gradient operator with respect to the
position of the vertex xα. For the details on the formu-
las derivation see Appendix A. Note that Equation 14
is equivalent to the cotangent formula [38], commonly
used in discrete exterior calculus. A comparison of the
fluid simulation results using first-order and second-
order surface energy approximations is presented in
Section 5.2.

We have presented a finite element discretization of
the Navier-Stokes equation, formulated in the form of
a quadratic optimization problem, which fully couples
the pressure and velocity fields and allows us to
accurately include surface tension forces in our model.

3.4 Pressure Stabilization
In some cases, the matrix P might not have full
column rank, making the KKT matrix singular. In the
finite element literature this is referred to as locking. To
circumvent this problem we add a stabilization term
to the KKT system.

We apply the idea of pseudo-compressibility [39] to
stabilize the Navier–Stokes equations. There are dif-
ferent versions of this class of pseudo-compressibility
methods. However, the version we use replaces the
continuity constraint ∇ · u = 0 with

∇ · u− ε

ρ
∇2p = 0 (15)

where ε is termed the stabilization parameter and is re-
lated to the time step one is using. Shen [39] suggests
using ε ≈ ∆t.

We can discretize this modified continuity equation
using a finite volume method

0 =

∫
Vfluid

(
∇ · u− ∆t

ρ
∇2p

)
dV ≈ PTu−∆tSp. (16)

The formulation of the matrix P has already been
shown in Section 3.3. In order to evaluate the second
term, we split the volume integral into the sum of
integrals over each tetrahedron and apply Gauss’
theorem, which yields

∆t

ρ

∫
Vfluid

(
∇2p

)
dV =

∆t

ρ

∑
k

∑
l

∫
Akl

(∇p · nkl) dA,

where Akl is a face of the kth tetrahedron, shared
with the lth tetrahedron, and nkl is the normal vec-
tor to Akl. Now, assuming that the pressure field is
discretized at the barycenters of the elements in our
mesh we can approximate the term ∇p · nkl on Akl.

Fig. 5. The distance dk from the barycenter of a
tetrahedron k to its face Akl is four times smaller than
its height hk relative to that face. The volume of this
tetrahedron Vk = 1

3hkAkl, hence dk = 3Vk

4Akl
. Analo-

gously, dl = 3Vl

4Akl
. From this, we have that the distance

between the barycenter, in the direction orthogonal to
Akl equals dkl = dk + dl = 3

4
Vk+Vl

Akl
.

We do it by evaluating the term p(x+dn) using Taylor
approximation

p(x + dn) ≈ p(x) + (∇p(x) · n) d. (17)

From this
∇p · nkl ≈

pl − pk
dkl

, (18)

where dkl is the distance between the barycenters of
the kth and the lth tetrahedra projected onto nkl. This
is a good approximation as long as the barycenters
of tetrahedra k and l project onto the same point on
Akj . Fortunately, the DSC method optimizes the mesh
to favor this property. This approximation has been
used previously by Chentenez et al. [24], and similar
approximations are also used in computational fluid
dynamics [40].

We can express the formula shown in Equation 18
using the area of Akl and the volumes of its adjacent
tetrahedra

dkl =
3

4

Vk + Vl
Akl

(19)

(see Figure 5 for the explanation). Hence

∆t

ρ

∫
Vfluid

(
∇2p

)
dV ≈ ∆t

ρ

∑
k

∑
l

Akl
dkl

(pl − pk) . (20)

For the sake of brevity, let us denote

δkl =
Akl
dkl

=
4

3

A2
kl

Vk + Vl
. (21)

This way we can write the matrix S as

Skl =
1

ρ

{
δkl if k 6= l
−
∑
m6=k δkm if k = l

, (22)

where δkl is given by Equation 21 if tetrahedra k and
l share a face, or otherwise equals 0. Such a pressure
stabilization term relaxes the incompressibility con-
straint by allowing limited volume exchange between
adjacent tetrahedra, while keeping the total volume
of the fluid constant.



IEEE TVCG 8

We can easily include this term in our KKT system
(Equation 4) by replacing the continuity constraint
PTu = 0 with Equation 16, obtaining[

A P
PT S

] [
u
λ

]
=

[
−b
0

]
. (23)

The comparison of the fluid simulation results using
this pressure stabilization scheme and the one by
Misztal et al. [3] is presented in Section 5.2.

3.5 Solid Boundaries

In the computer graphics community there are two
popular choices of boundary condition equations at
the contact surface between the fluid and the solid
boundaries. The free-slip condition states that at the
solid boundaries the normal velocity of the fluid
must be 0 (in case the solid wall is static) or must
match the normal velocity of the solid. This boundary
condition is a popular choice for fluids with low
viscosity values. The no-slip condition states that at the
solid boundaries, the fluid does not move relative to
the boundary (its velocity matches that of the solid).
This boundary condition is favored when modeling
fluids with high-viscosity values. In our experiments,
we have been using the former approach, although
implementation of a no-slip condition is also possible
in our framework.

Let us focus on a static solid wall W ⊂ R3 (in-
cluding moving solids is straight-forward and only
changes the left-hand side part of our KKT system).
Let us denote the set of all fluid vertices in contact
with the solid boundary as

C = {k : pk ∈ ∂W} , (24)

where pk is the position of the kth vertex. We may
now write the free-slip solid boundary condition for
a vertex k ∈ C as

nTk uk = 0 ∀k ∈ C, (25)

where uk is the fluid’s velocity at the kth vertex and nk
is the normal to the boundary at pk. Given the velocity
field u ∈ R3NV we may now define the boundary
condition at solid walls as

Cu = 0 (26)

where C ∈ R‖C‖×3NV . Now we may add the solid
boundary conditions to our optimization problem as
a hard constraint

ut+∆t = arg min
u

1

2
uTAu + uTb (27)

subject to

PTu = 0 (28)
Cu = 0 (29)

This results in a KKT-matrix

K′ =

 A P CT

PT εS 0
C 0 0

 (30)

This is clearly a symmetric indefinite matrix. The C-
matrix has full row rank and therefore the KKT-matrix
K′ is nonsingular.

3.6 Multiple phases

One can easily adapt the DSC method so that it
handles multiple phases. Instead of having just two
labels for tetrahedra (inside and outside), one can use
an arbitrary number of labels, each representing a
different phase. This allows us to simulate several, im-
miscible fluids with different density, surface tension
and viscosity values.

Since each tetrahedron in the mesh is occupied
by just one fluid, the solver remains essentially un-
changed. We apply full-slip boundary conditions on
the contact surface between each pair of interacting
fluids, meaning that the vertices on the interface
between two fluids are given freedom to move in ev-
ery direction. The discretization of the Navier-Stokes
equation presented in Section 3.3 remains valid when
we associate different density, viscosity and surface
energy density values with different elements. The
only part that needs changing is the pressure stabi-
lization term. In order to avoid exchanging volume
between two different fluids, we modify the matrix S
(given by Equation 22) as follows

Skl =
1

ρi

{
δkl if k 6= l
−
∑
m 6=k δkm if k = l

, (31)

where δkl is given by Equation 21 if tetrahedra k and
l share a face and belong to the same fluid (have the
same label i), or otherwise equals 0.

4 USING A PRECONDITIONED ITERATIVE
SOLVER

The KKT system solving step was the main bottle-
neck in the previous work [4]. The fluid simulation
method would spend up to 70% of the computation
time solving the linear system using the Cholesky
decomposition method. This is why we decided to
use an iterative solver in our work. The indefiniteness
of the modified KKT-matrix may cause numerical
problems when we want to solve our system of linear
equations. Ideally we would like to apply a scheme
like the Conjugate Gradient (CG) method. However,
CG typically does not converge well for indefinite
systems.

Typically MINRES, SYMMLQ [41] or GMRES [42]
are used instead of CG when dealing with an in-
definite matrix. In earlier simulations we used the
Generalized Minimum Residual (GMRES) method. It



IEEE TVCG 9

is similar to CG except it keeps a memory limited
local storage of vectors spanning the Krylov space
that is being explored [43]. One can find off-the-
shelf GPU implementations of GMRES which can
boost the performance with almost no programming
effort. In later simulation we replaced the GMRES
method with the Conjugate Residual (CR) method
[44], which takes the symmetry of our KKT matrix
into account, improving the overall performance of
our fluid simulation method (see Tables 1 and 2). In
both cases we use CUSP [45].

The matrix K is not diagonally dominant, so we can
not use the well-known Jacobi preconditioner. Instead,
in order to improve the GMRES or CR method’s
convergence rate, we apply a diagonal approximation
of Murphy’s block preconditioner [46]. It is based on
the idea of using a diagonal version of the Schur
complement as a preconditioner

Pschur =

[
A 0
0

(
S−PA−1PT

)] (32)

The diagonal approximation of this preconditioner
would be

Pdiag =

[
diag (A) 0

0 diag
(
S−P (diag (A))

−1
PT
)]
(33)

This preconditioner is inexpensive to compute. Fur-
thermore, Pdiag is trivial to invert. Hence we solve
the preconditioned system

P−1
diagK

[
u
λ

]
= P−1

diag

[
−b
0

]
. (34)

For a modified KKT-matrix, which includes the
solid constraints

K′ =

 A P CT

PT εS 0
C 0 0

 (35)

(compare Section 3.5) we modify our preconditioner
as follows

P′diag =

[
Pdiag 0

0 diag
(
−CT (diag (A))

−1
C
)]

. (36)

In our experiments this seems to works well in
combination with both GMRES (see Figure 6 for con-
vergence plots) and CR.

5 TESTS AND RESULTS

5.1 Viscosity
In order to validate our viscosity model, we have
run a simple experiment, in which a Stanford bunny
model, given different viscosity coefficient values,
deforms freely due to the surface tension force (Figure
7). The results of the experiment follow the intuition:
when the viscosity coefficient is low, the fluid volume
deforms rapidly, however it takes a long time to lose

Fig. 6. Typical convergence behavior for a GMRES
solver using our preconditioner (red line) and without
a preconditioner (blue line) in a flow dominated by
surface tension: the horizontal axis shows the number
of GMRES iterations and the vertical axis – the rel-
ative residual. In this example, preconditioning helps
GMRES converge to a desired final residual of 10−4 in
as few as 20 iterations.

Fig. 7. Stanford bunny model deforming in zero gravity
due to the surface tension forces after (from the left to
the right) 1, 2 and 3 seconds. The fluid’s viscosity, from
the top to the bottom: µ = 0 P (the unit of viscosity),
µ = 0.1 P and µ = 1 P.

its kinetic energy and keeps oscillating; as we increase
the viscosity coefficient, we introduce more damping
— the deformation progresses more slowly and the
initial shape smoothly transitions into an oval, and
further on — into a sphere.

5.2 Capillary waves

One of the applications requiring both low numer-
ical diffusion and accurate treatment of the surface
tension forces is the simulation of capillary waves.
The discussion of the problem and benchmark results
have been provided by Brochu et al. [12]. We have
repeated one of their experiments to see how our
method deals with this problem. Our results are in



IEEE TVCG 10

Fig. 8. A uniformly (top row) and non-uniformly (bottom
row) tessellated cube in zero gravity deforming due to
surface tension forces. Rather than deforming directly
into a sphere, the blob of fluid oscillates rapidly be-
tween an octahedron-like and a cube-like shape until
its kinetic energy dissipates and it becomes spherical.
Notice that that non-uniform tessellation of the initial
volume of fluid does not affect the behavior of the fluid
significantly, nor does it introduce ghost forces.

Fig. 9. Capillary waves experiment results with first-
order surface energy term (top row) and with the pre-
vious pressure stabilization scheme from [3] (bottom
row). In the former case, the behavior of the fluid is
similar to that presented in Figure 8, however, notice-
able asymmetry and slight drift emerge. In the latter
case, simulation quality is significantly lower and the
capillary waves are not captured correctly.

agreement with previous work (they are presented
in Figure 8). Note that the simulation results do not
depend significantly on the initial tessellation of the
fluid volume. This is the case, however, in the earlier
approaches by Misztal et al. [3] and Erleben et al. [4]
(as shown in Figure 9). While using the first-order
surface energy approximation leads to generally sane
results, the free surface of the fluid quickly becomes
visibly asymmetric, and the fluid volume begins to
drift. Using the pressure stabilization scheme from [3]
dramatically deteriorates the simulation quality, intro-
duces ghost forces (causing the drift of the fluid) and
practically prevents us from capturing the capillary
effects at all.

5.3 Droplet pinch-off

In nearly all fluid animation methods droplet pinch-
off is a consequence of disintegrating thin liquid
threads or sheets. In the level set based approaches to
fluid animation, this usually happens when the scale
of those features becomes lower than the resolution

of the computational grid. While this usually leads
to plausibly looking results, it is hardly physically
correct. Particle-based approaches produce droplets
when some particles travel beyond the interaction
distance from the main (continuous) volume of the
liquid. This, again, is not physically accurate, since
in the macroscopic scale liquids do not exhibit such
discrete behavior.

Unlike those two approaches, the DSC-based ap-
proach is much more conservative. It is capable of rep-
resenting arbitrarily thin features, since all criteria for
interface merging or splitting are quality-dependent,
rather than scale-dependent. In principle, the interface
(free surface of the liquid) splits only when self-
collisions occur. That means, in order to understand
droplet pinch-off in the DSC-based fluid animation
framework, we have to look at the actual physical
phenomena leading to droplet pinch-off in real free
surface flows.

The break-up of thin liquid threads into droplets
and the conditions ruling when this happens are
explained by the Plateau-Rayleigh instability [47], [48].
The principal factor leading to disintegration is the
surface tension, hence, droplet pinch-off cannot be
simulated accurately without accurate treatment of
the surface tension forces. Naturally occuring per-
turbations to the free surface of the fluid thread are
propagated along the thread as capillary waves. While
some of those waves decay in time, some grow at a
fast rate. The capillary wave formation also occurs
when the cross section of the liquid thread is not
circular (due to the surface tension forces trying to
minimize the free surface). It has been proven theo-
retically, that for a vertically falling column of liquid
with circular cross-section, droplet pinch off occurs if
its wavelength is greater than its circumference. In the
general setting, the conditions for droplet pinch-off
are more complex and are outside of the scope of this
paper, however, they have been a subject of extensive
research due to their relevance in various branches
of technology, for example ink-jet printing [48]. In
Figure 10 we present the results of our simulations
displaying the break-up of thin liquid threads.

The case of disintegration of thin liquid sheets is
even more complex, however it has been a subject of
research within the field of rheology [49]. In principle,
it is similar to the disintegration of liquid threads,
in the sense that the droplets pinch off from the
sheet’s boundary, which, in the presence of surface
tension forces, behaves similarly to a liquid thread.
The discussion of this phenomenon is outside the
scope of this paper, however, we present the results of
a simulation displaying disintegration a liquid sheet
in our framework (Figure 11).

5.4 Other experiments
In order to verify our model, we have performed
a “crown” experiment in which a spherical droplet



IEEE TVCG 11

Fig. 10. The Plateau-Rayleigh instability leading to disintegration of liquid threads produced by an oblique
collision of two spherical droplets due, for two different surface tension values: σ1 = 2 dyn/cm (top row) and
σ2 = 10 dyn/cm (bottom row).

Fig. 11. Disintegration of a liquid sheet produced by
a head-on collision of two spherical droplets. Droplets
pinch off from the boundary of the sheet due to the
surface tension forces.

falls into a shallow layer of liquid. The results of
the simulation are realistic, as shown in Figure 12.
Observe that proper handling of thin sheets of fluid
comes naturally in our method.

Figures 1 and 13 present the results of our experi-
ments with multiple immiscible fluids: in particular
water and oil. Each type of contact between fluid,
solid and gaseous phases is assigned different surface
energy densities. We observe qualitatively different
behavior in the different phases.

5.5 Performance

We have run all our experiments on a machine with
an Intel R© CoreTM i7 CPU X 980 3.33GHz with an
NVIDIA R© GeforceTM GTX580 GPU.

The statistics of our simulations before performance
optimization are presented in Table 1. The timings are
comparable to other finite element based simulation
methods [26]. By applying an iterative solver, we have
significantly decreased the time spent on solving the
KKT system. The DSC method’s mesh improvement
functionality seems to work robustly, particularly for
single phase simulations, where it allows us to keep
most of the dihedral angles in the range 10◦ − 160◦

except for the times when collisions occur. Those
times, unfortunately, tend to introduce low quality
tetrahedra which might not be removed immediately.

While the fluid simulation method seems to deal
with such elements rather well, they negatively affect
the performance during the advection step. We are
planning to address this issue by investigating more
sophisticated mesh refinement schemes.

In Table 2 we present the statistics of some of our
simulations after performance optimization, including
the improved interface edge collapse routine (see
Section 3.1.1), using the CR solver rather than GMRES
(see Section 4) and parallelizing the matrix assembly
step. The latter has been done by rewriting the matrix
assembly code and using the OpenMP [50] API, utiliz-
ing all six cores of the CPU (12 threads). This has lead
to significant performance improvement, decreasing
the computation time per iteration by about 50%. The
improvement in the advection step timings in the
new results is a consequence of several minor changes
and improvements in the implementation of the DSC
method.

6 SUMMARY AND DISCUSSION

The distinguishing characteristic of our scheme is that
it is Lagrangian with an explicit interface representa-
tion, yet also volumetric, using a single irregular grid
for both simulation as well as tracking and handling
collisions of parts of the interface. In this work, we
have demonstrated that the method can deal with
multiphase flows and that the qualitative behavior of
the simulated fluid is as expected.

Our new pressure stabilization strategy resulted in
lower numerical diffusion than in [3], [4], allowing us
to capture the capillary waves correctly and making
our simulations of surface tension dominated flows on
par with the state-of-the-art methods [12], [51]. Thin
sheets are handled accurately without the need for
any special treatment. Furthermore, our new pressure
stabilization scheme made the method insensitive to
the mesh element size, removing the problem of ghost
forces present in earlier works when the initial tessel-
lation of the fluid volume is non-uniform. This way,
we have opened the doors for an adaptive-resolution,
multi-scale fluid simulation using our framework.

Compared to [3], we have also improved the treat-
ment of solid boundaries. The presented formulation



IEEE TVCG 12

Fig. 12. A spherical droplet splashing in a cylindrical container with a shallow layer of water, producing a “crown”.
Observe that our method does not have any problems with handling thin layers of fluid.

Fig. 13. The results of our two-phase experiments with water and oil: the “double dam breaking” experiment in
which the collision of the volumes of oil and water produces a rapidly moving jet (top); the movement of a small
volume of oil in water due to the difference in densities (bottom).

TABLE 1
Simulation statistics before performance optimization: the initial number of tetrahedra of the embedding mesh
(excluding tetrahedra labeled outside which are not used for computation); the initial/max/median number of
tetrahedra of the computational mesh; the initial/max/median number of the surface elements; the average

timings of each step of the simulation: matrix assembly, solving the linear system using the GMRES method,
advection step using the DSC method (including mesh improvement); the total average timing of an iteration.

#tets #triangles average time per iteration (seconds)
example initial/max/median initial/max/median assembly GMRES advection total

CUBE N.U. 20345 / 20345 / 17403 7616 / 7616 / 7610 6.41 3.48 3.87 13.9

OIL/WATER 42319 / 42319 / 24538 8832 / 9532 / 9040 8.91 6.57 4.19 19.9

TEASER 24770 / 92893 / 43983 11840 / 37089 / 20575 22.0 11.2 14.4 48.1

CROWN 33810 / 94789 / 81983 15104 / 38054 / 32160 32.7 19.6 19.8 72.8

DAM BREAKING 84852 / 108518 / 98722 33370 / 42736 / 38291 40.2 21.4 23.1 85.6

works well with the iterative linear system solver and
simplifies adding moving solids to the model in the
future, in contrast to the approach presented in [3].
The use of a preconditioned iterative solver allows us
to decrease the amount of time spent on solving the
linear system, which was the bottleneck in [4].

In the future we would like to investigate different
mesh refinement schemes, which would allow us
to improve the computational mesh quality when
changes in the surface mesh topology take place. We
would also like to explore the applicability of our
method in simulating interactions between fluids and
deformable solid bodies.

ACKNOWLEDGMENTS

This work was funded by a grant from the Danish
Agency for Science, Technology and Innovation and
partially by NSF grants IIS-1249756 and CNS-0855167.
We would like to thank anonymous reviewers for
their valuable feedback.

REFERENCES

[1] M. K. Misztal, “Deformable simplicial complexes,” Ph.D. dis-
sertation, Technical University of Denmark (DTU), Denmark,
2010.

[2] M. K. Misztal and J. A. Bærentzen, “Topology adaptive inter-
face tracking using the deformable simplicial complex,” ACM
Trans. Graph., vol. 31, no. 3, pp. 24:1–24:12, Jun. 2012.



IEEE TVCG 13

TABLE 2
Selected simulation statistics after performance optimization, including improved edge collapse, parallelization

of the matrix assembly and use of the CR solver.

#tets #triangles average time per iteration (seconds)
example initial/max/median initial/max/median assembly CR solver advection total

CUBE N.U. 20349 / 20349 / 19247 7616 / 7916 / 7715 2.01 3.01 2.32 7.4

BUNNY/ARMADILLO 43252 / 43252 / 40825 18572 / 18527 / 17987 4.56 6.25 5.47 16.5

[3] M. K. Misztal, R. Bridson, K. Erleben, J. A. Bærentzen, and
F. Anton, “Optimization-based fluid simulation on unstruc-
tured meshes,” in Proc. of the 7th Workshop on Virtual Reality
Interactions and Physical Simulations, VRIPHYS, 2010, pp. 11–20.

[4] K. Erleben, M. K. Misztal, and J. A. Bærentzen, “Mathe-
matical foundation of the optimization-based fluid animation
method,” in Proc. of the 2011 ACM SIGGRAPH/Eurographics
Symp. on Comp. Animation, 2011, pp. 101–110.

[5] N. Foster and D. Metaxas, “Realistic animation of liquids,”
Graph. Models Image Process., vol. 58, no. 5, pp. 471–483, 1996.

[6] ——, “Modeling the motion of a hot, turbulent gas,” in
SIGGRAPH ’97: Proc. of the 24th annual conference on Comp.
graphics and interactive techniques, 1997, pp. 181–188.

[7] J. Stam, “Stable fluids,” in SIGGRAPH ’99: Proceedings of the
26th annual conference on Comp. graphics and interactive tech-
niques. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 1999, pp. 121–128.

[8] N. Foster and R. Fedkiw, “Practical animation of liquids,” in
SIGGRAPH ’01: Proc. of the 28th annual conference on Comp.
graphics and interactive techniques. ACM, 2001, pp. 23–30.

[9] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of
smoke,” in SIGGRAPH ’01: Proc. of the 28th annual conference
on Comp. graphics and interactive techniques. New York, NY,
USA: ACM, 2001, pp. 15–22.

[10] R. Bridson and M. Müller-Fischer, “Fluid simulation: Siggraph
2007 course notes,” in SIGGRAPH ’07: ACM SIGGRAPH 2007
courses. New York, NY, USA: ACM, 2007, pp. 1–81.

[11] R. Bridson, Fluid Simulation. Natick, MA, USA: A. K. Peters,
Ltd., 2008.

[12] T. Brochu, C. Batty, and R. Bridson, “Matching fluid simulation
elements to surface geometry and topology,” ACM Trans.
Graph., vol. 29, no. 4, pp. 47:1–47:9, Jul. 2010.

[13] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid
poisson solver for fluids simulation on large grids,” in Proc.
of the 2010 ACM SIGGRAPH/Eurographics Symp. on Comp.
Animation, 2010, pp. 65–74.

[14] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, “Multiple
interacting liquids,” ACM Trans. Graph., vol. 25, no. 3, pp. 812–
819, 2006.

[15] B. Kim, “Multi-phase fluid simulations using regional level
sets,” ACM Trans. Graph., vol. 29, pp. 175:1–175:8, December
2010.

[16] W. Zheng, J.-H. Yong, and J.-C. Paul, “Simulation of bubbles,”
in Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on
Comp. animation, ser. SCA ’06. Eurographics Association, 2006,
pp. 325–333.

[17] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual
review of astronomy and astrophysics, vol. 30, pp. 543–574, 1992.

[18] B. Solenthaler, J. Schläfli, and R. Pajarola, “A unified particle
model for fluid solid interactions,” Comput. Animat. Virtual
Worlds, vol. 18, pp. 69–82, 2007.

[19] B. E. Feldman, J. F. O’Brien, and B. M. Klingner, “Animating
gases with hybrid meshes,” in SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Papers. New York, NY, USA: ACM, 2005, pp.
904–909.

[20] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun,
“Stable, circulation-preserving, simplicial fluids,” ACM Trans.
Graph., vol. 26, no. 1, p. 4, 2007.

[21] B. E. Feldman, J. F. O’Brien, B. M. Klingner, and T. G. Gok-
tekin, “Fluids in deforming meshes,” in SCA ’05: Proc. of the
2005 ACM SIGGRAPH/Eurographics Symp. on Comp. animation.
ACM, 2005, pp. 255–259.

[22] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien,
“Fluid animation with dynamic meshes,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 820–825, 2006.

[23] A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk, “A finite
element method for animating large viscoplastic flow,” ACM
Trans. Graph., vol. 26, July 2007.

[24] N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and
J. R. Shewchuk, “Liquid simulation on lattice-based tetra-
hedral meshes,” in SCA ’07: Proc. of the 2007 ACM SIG-
GRAPH/Eurographics Symp. on Comp. animation, 2007, pp. 219–
228.

[25] C. Wojtan and G. Turk, “Fast viscoelastic behavior with thin
features,” in SIGGRAPH ’08: ACM SIGGRAPH 2008 papers.
New York, NY, USA: ACM, 2008, pp. 1–8.

[26] M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk,
and J. F. O’Brien, “Dynamic local remeshing for elastoplastic
simulation,” ACM Trans. Graph., vol. 29, pp. 49:1–49:11, July
2010.

[27] N. Chentanez, T. G. Goktekin, B. E. Feldman, and J. F. O’Brien,
“Simultaneous coupling of fluids and deformable bodies,” in
SCA ’06: Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp.
on Comp. animation, 2006, pp. 83–89.

[28] J. D. Wendt, W. Baxter, I. Oguz, and M. C. Lin, “Finite volume
flow simulations on arbitrary domains,” Graph. Models, vol. 69,
no. 1, pp. 19–32, 2007.

[29] H. Si, “Tetgen, a quality tetrahedral mesh generator and
three-dimensional delaunay triangulator, v1.3 user’s manual,”
WIAS, Tech. Rep., 2004.

[30] V. N. Parthasarathy, C. M. Graichen, and A. F. Hathaway, “A
comparison of tetrahedron quality measures,” Finite Elements
in Analysis and Design, vol. 15, no. 3, pp. 255–261, 1994.

[31] A. Liu and B. Joe, “Relationship between tetrahedron shape
measures,” BIT Numerical Mathematics, vol. 34, no. 2, pp. 268–
287, 1994.

[32] L. A. Freitag, M. Jones, and P. Plassmann, “An efficient parallel
algorithm for mesh smoothing,” in Proc. of the Fourth Interna-
tional Meshing Roundtable, 1995, pp. 103–112.

[33] L. A. Freitag and C. Ollivier-Gooch, “Tetrahedral mesh im-
provement using swapping and smoothing,” International Jour-
nal for Numerical Methods in Engineering, vol. 40, pp. 3979–4002,
1997.

[34] B. M. Klingner and J. R. Shewchuk, “Agressive tetrahedral
mesh improvement,” in Proc. of the 16th International Meshing
Roundtable, Oct. 2007, pp. 3–23.

[35] M. K. Misztal, J. A. Bærentzen, F. Anton, and K. Erleben,
“Tetrahedral mesh improvement using multi-face retriangula-
tion,” in Proceedings of the 18th International Meshing Roundtable,
Oct. 2009, pp. 539–556.

[36] X. Jiao, “Face offsetting: A unified approach for explicit mov-
ing interfaces,” J. Comput. Phys., vol. 220, no. 2, pp. 612–625,
2007.

[37] J. Nocedal and S. J. Wright, Numerical optimization, ser. Springer
Series in Operations Research. New York: Springer-Verlag,
1999.

[38] U. Pinkall and K. Polthier, “Computing discrete minimal
surfaces and their conjugates,” Experimental mathematics, vol. 2,
no. 1, pp. 15–36, 1993.

[39] J. Shen, “Pseudo-compressibility methods for the unsteady
incompressible navier-stokes equations,” in Proc. of the 1994
Beijing Symp. on Nonlinear Evolution Equations and Infinite Dy-
namical Systems. ZhongShan University Press, 1997, pp. 68–78.

[40] H. K. Versteeg and W. Malalasekera, An introduction to com-



IEEE TVCG 14

putational fluid dynamics: the Finite Volume method. Longman
Scientific and Technical, 1995.

[41] C. C. Paige and M. A. Saunders, “Solution of sparse indefi-
nite systems of linear equations,” SIAM Journal on Numerical
Analysis, vol. 12, no. 4, pp. 617–629, 1975.

[42] Y. Saad and M. H. Schultz, “Gmres: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856–869, Jul. 1986.

[43] Y. Saad, Iterative methods for sparse linear systems. Society for
Industrial Mathematics, 2003.

[44] D. G. Luenberger, “The conjugate residual method for con-
strained minimization problems,” SIAM J. Numer. Anal., vol. 7,
no. 3, 1970.

[45] N. Bell and M. Garland, “Cusp: Generic parallel algorithms for
sparse matrix and graph computations,” 2010, version 0.1.0.

[46] K. K. Phoon, K. C. Toh, S. H. Chan, and F. H. Lee, Compu-
tational Fluid and Solid Mechanics 2003: Second Mit Conference
2003. Elsevier Science Ltd, 2003, vol. 1, ch. A Generalised
Jacobi Preconditioner for Finite Element Solution of Large-
Scale Consolidation Problems, pp. 573–577.

[47] D. T. Papageorgiou, “On the breakup of viscous liquid
threads,” Physics of Fluids, vol. 7, no. 7, p. 1529, 1995.

[48] J. Eggers, “Nonlinear dynamics and breakup of free-surface
flows,” Rev. Mod. Phys., vol. 69, pp. 865–930, Jul 1997.

[49] G. Taylor, “The dynamics of thin sheets of fluid. iii. disintegra-
tion of fluid sheets,” Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, vol. 253, no. 1274,
pp. pp. 313–321, 1959.

[50] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan,
and J. McDonald, Parallel Programming in OpenMP. Morgan
Kaufmann, 2000.

[51] N. Thürey, C. Wojtan, M. Gross, and G. Turk, “A multiscale
approach to mesh-based surface tension flows,” in SIGGRAPH
’10: ACM SIGGRAPH 2010 papers. New York, NY, USA: ACM,
2010, pp. 1–10.

Marek Krzysztof Misztal received his PhD
degree in computer science from the Techni-
cal University of Denmark in 2011. He is cur-
rently a postdoctoral fellow at the Niels Bohr
Institute, University of Copenhagen. His re-
search interests include geometry process-
ing, physics-based simulation and scientific
computing.

Kenny Erleben received his PhD degree in
2005 and was soon employed as an Assis-
tant Professor at the Department of Com-
puter Science, University of Copenhagen
(DIKU). He has served as chairman of the
OpenTissue open source project since 2007,
and was one of the people who started the
project in late 2001. In 2008, he received a
NVIDIA professor partnership and became
a member of the organizing committee for
the Virtual Reality and Interactive Physical

Simulation (VRIPHYS) conference. Erleben was employed as an
Associate Professor in 2009 and appointed head of the eScience
Research School at the Faculty of Science in 2010. Currently he
serves as Deputy Head of Department of Education at DIKU. Er-
leben works with interactive computer simulation and has particular
interest in computational contact mechanics and computational fluid
dynamics.

Adam Bargteil is an assistant professor in
the School of Computing at the University of
Utah. He completed his PhD degree in com-
puter science at the University of California
at Berkeley, where he worked in the Berkeley
Computer Animation & Modeling group. He
then spent two years as a postdoctoral fellow
working in the Graphics Lab at Carnegie
Mellon University. Bargteil’s research inter-
ests are in computer graphics and animation,
especially using physical simulation for com-

puter animation. He is also interested in scientific computing, numer-
ical methods, computational physics and computational geometry.

Jens Fursund received his M.Sc. degree in
Digital Media Engineering from the Techni-
cal University of Denmark in 2010. He was
then employed as a Research and Innovation
Scientist at the Alexandra Institute, Denmark.
Since October 2012 he has been working
as an R&D Engineer at Industrial Light &
Magic, CA, USA. His research interests in-
clude computer graphics, physics-based sim-
ulation and computational geometry.

Brian Bunch Christensen received his PhD
in fluid animation for visual effects from the
Department of Computer Science at Aarhus
University in 2010. His research interests
include fluid simulation, real-time rendering,
and ray-tracing techniques.

Jakob Andreas Bærentzen received his
MSc and PhD degrees from the Technical
University of Denmark. He is now an Asso-
ciate Professor in the Department of Applied
Mathematics and Computer Science at the
Technical University of Denmark. Andreas
Barentzen’s research interests are focused
on digital 3D shapes. In particular, he inves-
tigates shape representation and manipula-
tion methods for applications such as inter-
active sculpting, simulation and modeling of

dynamic phenomena, procedural synthesis of 3D models, and the
creation of digital prototypes. He is also interested in many aspects
of real-time graphics.

Robert Bridson is an Associate Professor
at the University of British Columbia, in the
Computer Science Department. He is also
an active industrial researcher, best known
for helping develop fluid simulation software
used in many recent films; his screen credits
include The Hobbit: An Unexpected Journey
and The Adventures of Tintin: The Secret of
the Unicorn.


