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1 Green’s Strain

We define a function x(u) which describes the mapping from
points in a rest configuration or material space to world or
deformed space. For each point ui, x(ui) is the correspond-
ing point after applying the deformation described by x(u).
If we want to understand how an infinitesimal region around
a point is deformed by x(u) we look at the deformation gra-
dient ∂x

∂u . The deformation gradient describes how you move
in world space as you move through material space. (We will
see later why it is called the deformation gradient.)

If our goal is to find elastic forces that undo the deformation,
we must first devise a way of measuring deformation. For
this we define Green’s strain tensor

εij =
1

2

(
∂x

∂ui
· ∂x

∂uj
− δij

)
. (1)

This metric is non-linear (we’ll look at a linear approxima-
tion a bit later) and, consequently, is invariant to rotations.
Invariance to rotations is very good because this means our
metric will not respond to rigid body motion of the object.

2 Stress

From Hooke’s law, given strain we can define stress, σ, as

σ = Cε, (2)

where C is a rank-4 tensor (i.e. a 4-dimensional matrix)
with 81 entries that relates the 9 entries in ε to the 9 entries
in σ. Of course, since ε and σ are symmetric, these entries
are not independent. In fact if we assume that the material
is isotropic, there are only two independent parameters and
we can write

σij = λεkkδij + 2µεij , (3)

where λ and µ are the Lamé constants.

Of course, this is a linear stress-strain relationship. Other
relationships are possible (and required when dealing with
complex materials).

3 Elastic Potential, Traction, and Force

We can now define the elastic potential energy density, η, as

η =
1

2
σijεij . (4)

We can also define traction, τ , or force per unit area as

τ = σn (5)

where n is the unit surface normal. Force will seek to reduce
the energy of the system, thus they will be in the direction
of the negative gradient of the energy, that is the force at a
point, xi, will be

f i =
∂η

∂xi
. (6)

Finite volume methods instead define force by integrating
traction over some region,

f i =

∮
∂R

σndS. (7)

It has been shown that for the types of finite elements we will
be concerned with in this class, these forces are equivalent
(and the second form is faster to compute).

4 Damping

Similar functions can be defined for damping, which is de-
pendent on velocity rather than deformation. We define
these by taking a time derivative of the above to get

vij =
1

2

(
∂x

∂ui
· ∂ẋ

∂uj
+
∂ẋ

∂ui
· ∂x

∂uj

)
(8)

σv
ij = φvkkδij + 2ψvij (9)

κ =
1

2
σv

ijvij (10)

5 Linear Finite Elements

As the name implies finite element methods take an object
we wish to simulate and break it up into a finite set of pieces.
While arbitrary elements are possible, we’ll stick to simpli-
cies (triangles in 2D tetrahedra in 3D).

u1
u2

u3
x1

x2

x3
x(u)u

1



Finite elements work by essentially limiting the types of
functions that can be represented. To do this we define
a basis over each element. We can then work with func-
tions expressed in this basis. The obvious basis to use with
simplicies is the linear basis we should all be familiar with:
barycentric coordinates. Recall, that a point, u in a triangle
can be expressed as a convex combination of the vertices of
the triangle,

u = b1u1 + b2u2 + b3u3 (11)

However, this is redundant since we have the additional con-
straint that b1 + b2 + b3 = 1. So, we can alternately write,

u = b1u1+b2u2+(1−b1−b2)u3 = u3+b1(u1−u3)+b2(u2−u3),
(12)

or in matrix form

u = u3 +

(
(u1 − u3)x (u2 − u3)x

(u1 − u3)y (u2 − u3)y

)(
b1
b2

)
(13)

Thus, we construct a matrix, which we call B, that contains
vectors along the edges of the triangle as its columns and this
matrix describes the mapping from barycentric coordinates
to material coordinates. If we wish to go the other way, we
will need to invert this matrix.(

b1
b2

)
= B−1(u − u3) = β(u − u3) (14)

Letting β = B−1. Similarly, when mapping from barycen-
tric coordinates to world coordinates we have

x = x3 + X

(
b1
b2

)
, (15)

where X is a matrix made up of vectors along the edges of
the triangle in world space. Now we can define the entire
mapping as

x(u) = x3 + Xβ(u − u3) (16)

Taking the gradient (derivative with respect to u) of this
function we have

F =
∂x

∂u
= Xβ. (17)

This is the deformation gradient. For linear finite elements,
it is a matrix which we call F . We can similarly define the
time derivative as

∂ẋ

∂u
= V β (18)

Where V contains velocity differences rather than posi-
tion differences in world coordinates. Finally, we can write
Green’s strain as

ε =
1

2

(
F T F − I

)
(19)

6 Cauchy’s Infinitesimal Strain

Suppose we write our deformation gradient as

∂x

∂u
= I + D (20)

That is the deformation gradient is the identity (no defor-
mation) plus some amount of deformation. Taking Green’s

strain we have

ε =
1

2
((I + D)T (I + D) − I) (21)

=
1

2
(II + DT + D + DT D − I) (22)

=
1

2
(DT + D). (23)

Now, if D is very small then DT D is much smaller than
D and 1/2(D + DT ) is a good estimate of Green’s strain.
Furthermore, this strain measure is linear which leads to all
sorts of nice consequences. Unfortunately, it is not invariant
to rotations, which leads to artifacts if it is used for large
deformations. Cauchy’s strain can be written as

ε =
1

2

(
∂xi

∂uj
+
∂xj

∂ui

)
− δij =

1

2

(
F + F T

)
− I (24)

7 Other Stress Measures

We can see from the definition of traction

τ = σn (25)

that stress maps normals to forces. However, its important
to distinguish where these normals and forces are defined.
If both normals and forces are in world space, the stress
is know as a Cauchy stress and often written as σ. If the
stress maps normals in material space to forces in material
space it is known as a Second Piola-Kirchhoff stress and
sometimes written as S. A first Piola-Kirchhoff stress maps
normals in material space to forces in world space (as such it
is especially convenient) and is written P . Now, watch out,
when only one stress is being considered it is often written
with σ. The stress we defined earlier was actually a second
Piola-Kirchhoff stress. Now its easy to convert between these
stress since they all measure the same thing just in different
coordinate systems. Letting J = det(F ) we have

P = JσF−T , (26)

and

P = FS. (27)

By having different ways of specifying stress, we can choose
whichever one is most convenient for a given application.
The first Piola-Kirchhoff is particularly attractive since it
works with normals in the material space (where they are
constant) and maps directly to forces in world space (where
they will be applied).

8 Computing Forces

Using Einstein’s summation convention we can write

∂xi

∂uj
= Xikβkj (28)

εij =
1

2

(
∂xa

∂ui
· ∂xa

∂uj
− δij

)
(29)

=
1

2
XmkβkiXmnβnj +

1

2
δij (30)
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σij = λεppδij + 2µεij (31)

=
λ

2
(XmkβkpXmnβnp − 3) (32)

+µ (XmkβkiXmnβnj − δij) (33)

η =
1

2
εijσij (34)

=
1

2

(
1

2
XmkβkiXmnβnj +

1

2
δij

)
(35)(

λ

2
(XmkβkpXmnβnp − 3) (36)

+ µ (XmkβkiXmnβnj − δij)) (37)

∂η

∂Xba
=

1

2
(
1

2
δbmδakβkiXmnβnj (38)

+
1

2
Xmkβkiδbmδanβnj)σij (39)

+
1

2
εij(

λ

2
δbmδakβkpXmnβnpδij (40)

+
λ

2
Xmkβkpδbmδanβnpδij (41)

+µδbmδakβkiXmnβnj (42)

+µXmkβkiδmbδanβnj) (43)

=
1

4
(βaiXbnβnj +Xbkβkiβaj)σij (44)

+
1

2
εij(

λ

2
βapXbnβnpδij (45)

+
λ

2
Xbkβkpβapδij (46)

+µβaiXbnβnj + µXbkβkiβaj) (47)

=
1

2
Xnbβaiβnjσij (48)

+
1

2
εij(λXbnβnpβapδij (49)

+2µXbnβaiβnj) (50)

=
1

2
Xnbβaiβnjσij (51)

+
1

2
(2Xnbβaiβnj) (52)

(
λ

2
εkkδij + µεij) (53)

= Xnbβaiβnj(
1

2
σij +

1

2
σij) (54)

= Xnbβaiβnjσij (55)

(56)

Reintroducing summations and integrating over the volume
of the element (in material space), v, we have the force on
node a is

fa = −v
3∑

n=1

X [n]

3∑
i=1

3∑
j=1

βnjβaiσij (57)

An alternate formulation (from finite volumes) yields the
following forces

fa = −1

3
Fσ(a1n1 + a2n2 + a3n3), (58)

where aini are the area-weighted normals of the three faces
incident to node a.

9 A Few Other Useful Formulas

We need the gradient of force for the stiffness matrix (K).
A derivation similar to the above yields:

∂Fai

∂Xpe
= δpiβejβakσkj (59)

+ λXibβbkβakβemXpdβdm (60)

+ µXibβbjβakβejXpdβdk (61)

+ µXibβbjβakXpcβcjβek (62)

The change in force with respect to velocity is

∂Fai

∂Ẋpe

= φXibβbkβakβemXpdβdm (63)

+ ψXibβbjβakβejXpdβdk (64)

+ ψXibβbjβakXpcβcjβek (65)

For linear strain we have Xβ = I and zero stress the for-
mulas simplify to

∂Fai

∂Xpe
= λδikβakβemδpm (66)

+ µδijβakβejδpd (67)

+ µδijβakδpjβek (68)

The change in force with respect to velocity is

∂Fai

∂Ẋpe

= +φδikβakβemδpm (69)

+ ψδijβakβejδpd (70)

+ ψδijβakδpjβek (71)
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