Final Exam Study Guide

1 Balanced BSTs (Chapter 19)

- Rotations
 - Single Rotations
 - Double Rotations
 - Inner vs. Outer cases
- AVL Trees
 - Recursive Definition
 - Insertion
- · Red-Black Trees
 - Definition
 - Top-Down insertion
 - Top-Down deletion
- AA trees
 - Definition
 - Split and Skew

2 Spatial Data Structures

- Regular Grids
- Quadtrees
- KD-trees
 - basic structure
 - findMin/findMax
 - nearest neighbor search
 - * Storing partial results best so far
 - * pruning reduce search space by eliminating subtrees
 - * traversal order visit most promising subtrees first
 - building a balanced tree
- BSP-trees

3 Transformations

- Translation
- Scale
- Rotation
- Shear
- Linearity
- Composing transformations
- OpenGL matrix stack
- gluLookAt()

4 Lighting/Shading

- Diffuse/Lambertion
- Specular
- Ambient
- Flat vs. Smooth
- Directional vs. Point Light

5 Heaps (Chapter 21)

- Heap order property
- Storage (in an array)
- Insertion/Deletion
- Heapify/BuildHeap

6 Hash Tables (Chapter 20)

- Hash Functions
- Collisions and Collision Handling
 - Linear Probing

- Quadratic Probing (including what is required to ensure that items can always be inserted)
- Separate Chaining

7 Graphs (Chapter 14)

- Definitions
 - Vertices/nodes
 - Edges/arcs
 - Directed vs. Undirected
 - Directed acyclic graph
 - path
 - path length
 - edge cost/weight
 - simple path
- Representation
 - Adjacency Matrix
 - Adjacency List
- Algorithms
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Single-Source Shortest paths
 - * Unweighted, positive weighted (Dijkstra's Algorithm), negative weighted
 - Strongly Connected Components
 - Minimum Spanning Trees (Kruskal's and Prim's algorithms)

8 Old Stuff

8.1 LinkedList (Chapter 17)

• insert/delete, updating references

8.2 Algorithm Analysis (Chapter 5)

- Definitions of $O, \Omega, \Theta, o, \omega, \theta$
- finding running times of algorithms

3.3 Recursion (Chapter 7)

- Basic recursion concepts
- Base case
- Inductive hypothesis
- Divide and Conquer Approach
- Pitfalls
- Dynamic Programming

8.4 Sorting (Chapter 8)

- BubbleSort
- InsertionSort
- MergeSort
- QuickSort

8.5 Stacks and Queues (Chapter 16)

- Implementation with Arrays and LinkedLists
- · advantages and disadvantages

8.6 Trees (Chapter 18)

- Structure and definitions
- depth, height, size, parent, child, ancestor, descendent, leaf, path, path length
- traversals (inorder, preorder, postorder, level-order)

8.7 Binary Search Trees (Chapter 19)

- Definition
- insertion/removal
- best-case/worst-case running times