CS-184: Computer Graphics

Lecture #4:2D Transformations

Prof. James O’Brien
University of California, Berkeley

Today

o 2D Transformations
o “Primitive” Operations
o Scale, Rotate, Shear, Flip, Translate

o Homogenous Coordinates
o SVD

o Start thinking about rotations...

Introduction

o Transformation:

An operation that changes one configuration into another

o For images, shapes, etc.
A geometric transformation maps positions that define the object to
other positions

Linear transformation means the transformation is defined by a
linear function... which is what matrices are good for.

Some Examples

|
A \

Original

Images from Conan The Destroyer, 1984

Mapping Function

f(x) = x in old image

Linear -vs- Nonlinear

Nonlinear (swirl)

Linear (shear)

Geometric -vs- Color Space

Color Space Transform
(edge finding)

Linear Geometric
(flip)

Instancing

Instancing

Linear is Linear

o Polygons defined by points

o Edges defined by interpolation between two
points

o Interior defined by interpolation between all
points

o Linear interpolation

Linear is Linear

o Composing two linear function is still linear

o Transform polygon by transforming vertices

<

11

Linear is Linear

o Composing two linear function is still linear

o Transform polygon by transforming vertices

f(x)=a+bx g(f)=c+df

g(x)=c+df(x) =c+ad—+ bdx

g(x)=a +b'x

Points in Space

o Represent point in space by vector in R"

o Relative to some origin!

o Relative to some coordinate axes!

o Later we’ll add something extra...
i p=[4.2]'

3

Origin, 0

13

Basic Transformations

o Basic transforms are: rotate, scale, and
translate

Rotate Scale

AA A A

Shear -- not really “basic”

Translate

14

Linear Functions in 2D

Y
X = _tx_ M oM xy_ X
Yy ,_ ty| [(MyxMyy| |y

X =t+M-x

Rotations

/\ S Cos(0) -Sin(0)
> p__Sin(H) Cos(6)

Rotate

45 degree rotation

1112 1
10 2
9 3

8 4 707 -.707
7 6 2 707 707

Rotations

o Rotations are positive counter-clockwise
o Consistent w/ right-hand rule

o Don’t be different...

o Note:

o rotate by zero degrees give identity
o rotations are modulo 360 (or 27T)

17

Rotations

o Preserve lengths and distance to origin
o Rotation matrices are orthonormal

o Det(R) =1 # —1

o In 2D rotations commute...

o But in 3D they won’t!

18

O
. K
S $
&0 3 %
S Q>
N &@
@ S 4

59 & S
Q’Q\ /QQ p' — 4
f | 0

Scale

Y

Y

19

Scales

o Diagonal matrices
o Diagonal parts are scale in X and scale in Y directions
o Negative values flip
o Two negatives make a positive (180 deg. rotation)

o Really, axis-aligned scales

Not axis-aligned... 20

Shear

21

Shears

o Shears are not really primitive transforms
o Related to non-axis-aligned scales

o More shortly.....

22

Translation

o This is the not-so-useful way:

AA v
p=p+)

Translate

Note that its not like the others.

23

Arbitrary Matrices

o For everything but translations we have:

X = A-X
o Soon, translations will be assimilated as well

o What does an arbitrary matrix mean!

24

Singular Value Decomposition

o For any matrix, A, we can write SVD:
A=QSR'

where Q and R are orthonormal and S is diagonal

o Can also write Polar Decomposition
A =QRSR'

\not the same Q

where Q is still orthonormal

25

Decomposing Matrices

o We can force Q and R to have Det=1 so they are
rotations

o Any matrix is now:

o Rotation:Rotation:Scale:Rotation

o See, shear is just a mix of rotations and scales

26

Composition

o Matrix multiplication composites matrices

p'=BAp

“Apply A to p and then apply B to that result.”
p'=B(Ap)=(BA)p=Cp

o Several translations composted to one

o Translations still left out...

p'=B(Ap +t) =§:3p+Bt =Cp+u

2

Composition

Transformations built up

from others

SVD builds from scale

and rotations
Also build other ways

i.e. 45 deg rotation built
from shears

28

Homogeneous Coordiantes

o Move to one higher dimensional space

o Append a 1 at the end of the vectors

£ D,
P,
Py]

[1

o For directions the extra coordinate is a zero

29

Homogeneous Iranslation

1 0 7 |[p.
p'=|0 1 ¢ ||p,

0 0 1}1

p'= Ap

The tildes are for clarity to
distinguish homogenized from
non-homogenized vectors.

30

Homogeneous Others

Now everything looks the same...
Hence the term “homogenized!”

£

Compositing Matrices

o Rotations and scales always about the origin

o How to rotate/scale about another point!?

L
/A‘ = /\

32

Rotate About Arb. Point

o Step |:Translate point to origin

/\
/\ Translate (-C)

Rotate About Arb. Point

o Step |:Translate point to origin

o Step 2: Rotate as desired

A

Translate (-C)

i Rotate (0)

Rotate About Arb. Point

o Step |:Translate point to origin
o Step 2: Rotate as desired

o Step 3: Put back where it was = Translate (:€)

Rotate (0)
(; O

Translate (C)

p'= CDRTP = Ap
T

Don’t negate the 1...

535

Scale About Arb. Axis

o Diagonal matrices scale about coordinate

axes only: Q

Not axis-aligned

.
> L/

S A

Scale About Arb. Axis

o Step |:Translate axis to origin

&« A

Scale About Arb. Axis

o Step |:Translate axis to origin

o Step 2: Rotate axis to align with one of the
coordinate axes

/

Scale About Arb. Axis

o Step |:Translate axis to origin

o Step 2: Rotate axis to align with one of the
coordinate axes

o Step 3: Scale as desired

S5

Scale About Arb. Axis

o Step |:Translate axis to origin

o Step 2: Rotate axis to align with one of the
coordinate axes

o Step 3: Scale as desired
o Steps 4&5:Undo 2 and | (reverse order)

¥

@) Q

Order Matters!

o The order that matrices appear in matters
A-B # BA

o Some special cases work, but they are special

o But matrices are associative

(A-B)-C=A-(B-C)

o Think about efficiency when you have many
points to transform...

Matrix Inverses

o In general: A~ undoes effect of A

o Special cases:
o Translation: negate Ix and Iy
o Rotation: transpose

o Scale: invert diagonal (axis-aligned scales)

o Others:

o |lnvert matrix

o |Invert SVYD matrices

42

Point Vectors / Direction Vectors

o Points in space have a 1 for the “w”
coordinate

o What should we have for g —b !
ow = ()
o Directions not the same as positions
o Difference of positions is a direction
o Position + direction is a position
o Direction + direction is a direction

o Position + position is honsense

43

Somethings Require Care

! PEs
S i j_, =

For example normals do not transform normally
M(a x b) # (Ma) x (Mb)

Use inverse transpose of the matrix for normals.
See text book.

44

Suggested Reading

o Fundamentals of Computer Graphics by
Pete Shirley

o Chapter 5

o And re-read chapter 4 if your linear algebra is rusty!

45

CS-184: Computer Graphics

Lecture #5: 3D Transformations and
Rotations

Prof. James O’Brien
University of California, Berkeley

Today

o Transformations in 3D

o Rotations
o Matrices
o Euler angles
o Exponential maps

o Quaternions

47

3D Transformations

o Generally, the extension from 2D to 3D is
straightforward

o Vectors get longer by one
o Matrices get extra column and row
o SVD still works the same way

o Scale, Translation, and Shear all basically the same

o Rotations get interesting

48

Translations

For 2D

For 3D

For 2D

For 3D

(Axis-aligned!)

Shears

For 2D

For 3D

(Axis-aligned!)

Shears

Shears y into x

Rotations

o 3D Rotations fundamentally more complex
than in 2D

o 2D:amount of rotation

o 3D:amount and axis of rotation

2 -VS-

2D 3D

35

Rotations

o Rotations still orthonormal
o D@t(R) = | # —1
o Preserve lengths and distance to origin

o 3D rotations DO NOT COMMUTE!
o Right-hand rule

o Unique matrices

Axis-aligned 3D Rotations

o 2D rotations implicitly rotate about a third
out of plane axis

9.

Axis-aligned 3D Rotations

o 2D rotations implicitly rotate about a third
out of plane axis

cos(0) —sin(0) O
R= [sin(0) cos(B) O
0 .3

cos(0) —sin(0)
sin(0) cos(6)

@ Note: looks same as R

Axis-aligned 3D Rotations

v><>

1 0 0
R.= [0 cos(B) —sin(0)
0 sin(B) cos(0) 5
- - “Z is in your face”
' cos(0) O sin(0) 9
R=| 0 1 0
| —sin(0) O cos(0) +
—
cos(B) —sin(B) O
R.= |sin(B) cos(B) O et 2\

S,

Axis-aligned 3D Rotations

1 0 0
R.= [0 cos(B) —sin(0)
0 sin(B) cos(0) | :
- - Also right handed “Zup
' cos(0) O sin(0) E:
R=| 0 1 0
—sin(0) 0 cos(0) 'S 9
cos(B) —sin(B) O /g(' 5
R.= |sin(B) cos(B) O e ¥ 2| mueano
= g -}

58

o Also known as ‘“‘direction-cosine’”’ matrices

Axis-aligned 3D Rotations

1 0 0
0 cos(B) —sin(0)

0 sin(0)

cos(0)

- cos(0)
R=| O
) —sin(0) 0
0) cos(B) O
-y

0 sin(0)

&2

Arbitrary Rotations

o Can be built from axis-alighed matrices:

R =R:-R;-R;

o Result due to Euler... hence called

Euler Angles

o Easy to store in vector

R = rot(x,y,z)

o But NOT a vector.

Arbitrary Rotations

Arbitrary Rotations

o Allows tumbling
o Euler angles are non-unique
o Gimbal-lock

o Moving -vs- fixed axes

o Reverse of each other

62

Exponential Maps

o Direct representation of arbitrary rotation
o AKA: axis-angle, angular displacement vector
o Rotate O degrees about some axis

o Encode 0O by length of vector .

0= <

63

Exponential Maps

o Given vector T ,how to get matrix R

o Method from text:

T T

rotate about x axis to put r into the x-y plane

rotate about z axis align r with the x axis

rotate 0 degrees about x axis
undo #2 and then #|
composite together

64

Exponential Maps

X XJ_ r

XJ_
/ \ E/

o Vector expressing a point has two parts

o X, does not change

|
o X, rotates like a 2D point

65

Exponential Maps

Xr = X X

—x, =F % (F xXXx)

X =X| +Xsin(8) +x, cos(6)

x;- sin(0)

—x cos(0)

66

Exponential Maps

o Rodriguez Formula l |
X

X
% \ 9/
X
Actually a minor variation ...

Exponential Maps

o Building the matrix

x' = ((F#") +sin(0)(Ex) — cos(0)(

(Fx)

Antisymmetric matrix

P 0

(ax)b=axb
Easy to verify by expansion

Fy

_,’>x

Exponential Maps

o Allows tumbling

o No gimbal-lock!

o Orientations are space within TT-radius ball
o Nlearly unique representation

o Singularities on shells at 21T

o Nice for interpolation

69

Exponential Maps

o Why exponential?

- : X
o Recall series expansion of €

Exponential Maps

o Why exponential?
o Recall series expansion of e
o Euler: what happens if you put in i0 for x

- 0 -6 —ie° 6
e =1 | | | St
2 3 4

1|_62|64| '6|_63|
et kel ETRAE TR

= c0s(0) +isin(0)

|

Exponential Maps

o Why exponential?

(Bx)0 (Fx)*0> (¥x)0° (¥x)*6*

08 =14 | | i

T e e TERGEY I
But notice that: (f’><)3 — _(f-x)

(#x)0 _ ¥ (f‘><)9 (f‘><)262 _(fx)93 —(f’><)264

Exponential Maps

Quaternions

o More popular than exponential maps

o Natural extension of e = cos(0) + isin(0)
o Due to Hamilton (1843)

o Interesting history

o Involves “hermaphroditic monsters”

74

Quaternions

o Uber-Complex Numbers

q = (21,22,23,8) = (2, 5)

q =121+ JjZ22 +kzz+S
i in-d

Mol Bwo

Lz

Quaternions

o Multiplication natural consequence of defn.
a'p = (ZgSp+2pSq+2Zp X2y , 5p5—Zp"Zy)
o Conjugate
@ = (—Z,S)

o Magnitude

ol =2-2+5" =q-q"

76

Quaternions

o Vectors as quaternions

v = (V,O)
o Rotations as quaternions
0 0

r = (P sini, COS 5)

o Rotating a vector

/
X =rex-r <= Compare to Exp. Map

o Composing rotations
r=r1-m

1.,

Quaternions

o No tumbling

o No gimbal-lock

o Orientations are “double unique”

o Surface of a 3-sphere in 4D

o Nice for interpolation

el = 1

78

Interpolation

79

Rotation Matrices

o Eigen system
o One real eigenvalue
o Real axis is axis of rotation

o Imaginary values are 2D rotation as complex number

o Logarithmic formula
v,

(#x) =In(R) = ZSinG(R_RT)
4 (Tr(R) —1
0 = cos (5)

80
Similar formulae as for exponential...

Rotation Matrices

o Consider:

e = -~ 1 0.0
Ri=|r, », r, [0 1 O
r. r, r ({0 O 1

zZX Zy zz

o Columns are coordinate axes after
transformation (true for general matrices)

o Rows are original axes in original system
(not true for general matrices)

81

Note:

o Rotation stuff in the book is a bit weak...
luckily you have these nice slides!

82

CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O’Brien
University of California, Berkeley

Today

o Windowing and Viewing Transformations
o Windows and viewports
o Orthographic projection

o Perspective projection

84

Screen Space

o Monitor has some number of pixels

o e.g. 1024 x 768

o Some sub-region used for given program

o You call it a window

o Let’s call it a viewport instead

1024, 768]

60, 350]

690,705]

1024, 768]

85

Screen Space

o May not really be a “screen”

o Image file

o Printer

o Other

o Little pixel details

o Sometimes odd

o Upside down

o Hexagonal

86
From Shirley textbook.

Screen Space

o Viewport is somewhere on screen

o You probably don’t care where
o Window System likely manages this detail

o Sometimes you care exactly where

o Viewport has a size in pixels

o Sometimes you care (images, text, etc.)

o Sometimes you don’t (using high-level library)

87

Screen Space

nx-0.5,ny-0.5

Integer Pixel Addresses

¢]:5

-0.5,-0.5 :
1=3 10 X 10 Image Resolution

88

Screen Space

1,1

Float Pixel Coordinates

v=0.35=(G + 0.5)/ny

0,0

u=0.35=(i+0.5)/nx

Canonical View Space

o Canonical view region

o 2D: [-1,-1] to [+1,+1]

+1,+1

——x=0.0, y=0.0

-1,-1

From Shirley textbook.

\O
-}

Canonical View Space

YA o1.1) kb & YA

o reflect-y

o Canonical view region l

o 2D: [-1,-1] to [+1,+1] (1) © (1)

scale
(-n/2,n,/2) (-0.5, n,-0.5)
{ y {
Iy
X
translate
X
o)
(ny2,-n,/2) (n,-0.5, -0.5)
From Shirley textbook.
(Image coordinates are up-side-down.)
2] nx O nx_ 1 -x
! 2 2
l = 2 2 y e Remove minus for right-side-up

Canonical View Space

o Canonical view region
o 2D: [-1,-1] to [+]1,+1]
o Define arbitrary window and define objects
o Transform window to canonical region
o Do other things (we’ll see clipping latter)

o Transform canonical to screen space

o Draw it.

92

From Shirley textbook.

Canonical View Space

World Coordinates
(Meters)

|
l

Eritl

Canonical

Note distortion issues...

Screen Space

(Pixels)

98

Projection

o Process of going from 3D to 2D
o Studies throughout history (e.g. painters)

o Different types of projection

o Linear

| Many special cases in books just
fi T oRrabhic one of these two...
o Perspective

Orthographic is special case of

o Nonlinear :
LS perspective...

94

Perspective Projections

| l ||”I

'

|"f!|

95

Linear Projection

o Projection onto a_planar surface

o Projection directions either

o Converge to a point

o Are parallel (converge at infinity)

96

Linear Projection

o A 2D view

Perspective Orthographic

97

Linear Projection

Orthographic

Perspective

98

Linear Projection /

Orthographic

4

Perspective

95

Linear Projection

O A 2 D view Note how different things can be seen
/ Parallel lines “meet” at infinity
<
<

Perspective Orthographic

100

Orthographic Projection

o No foreshortening
o Parallel lines stay parallel

o Poor depth cues

Canonical View Space

o Canonical view region
o 3D: [-1,-1.-1]to [+1,+1 +1]

o Assume looking down -Z axis

o Recall that “Z is in your face”

g

; 7
[1,1,1] /b\ [-1,-1,-1]

102

Orthographic Projection

o Convert arbitrary view volume to canonical

e

.- >
[1,1,1]')

[-1,-1,-1]

103

Orthographic Projection

View vector

Up vector

far,bottom,left

Center

Right = view X up near,top,right

Origin * Assume up is perpendicular to view.

104

Orthographic Projection

o Step |:translate center to origin

105

Orthographic Projection

o Step |:translate center to origin

o Step 2: rotate view to -Z and up to +Y

106

Orthographic Projection

o Step |:translate center to origin
o Step 2: rotate view to -Z and up to +Y

o Step 3: center view volume

107

Orthographic Projection

o Step |:translate center to origin
o Step 2: rotate view to -Z and up to +Y

o Step 3: center view volume

o Step 4:scale to canonical size

108

Orthographic Projection

o Step |:translate center to origin
o Step 2: rotate view to -Z and up to +Y

o Step 3: center view volume

o Step 4:scale to canonical size

M=S-T,-R-T,
¢ ol e
M=M, M,

109

Perspective Projection

o Foreshortening: further objects appear smaller
o Some parallel line stay parallel, most don'’t

o Lines still look like lines

o 1. ordering preserved (where we care)

110

image

- virtual
image

Perspective Projection

o Vanishing points
o Depend on the scene

o Not intrinsic to camera

o

B

o=l

“One point perspective”

Perspective Projection

o Vanishing points
o Depend on the scene

o Nor intrinsic to camera

“Two point perspective” .

Perspective Projection

o Vanishing points
o Depend on the scene

o Not intrinsic to camera

“Three point perspective” .

Perspective Projection

116

Perspective Projection

Near

-2 l

117

Perspective Projection

o Step |:Translate center to origin

\

118

Perspective Projection

o Step |:Translate center to origin

o Step 2: Rotate view to -Z, up to +Y

119

Perspective Projection

o Step |:Translate center to origin
o Step 2: Rotate view to -Z, up to +Y

o Step 3:Shear center-line to -Z axis

120

Perspective Projection

o Step |:Translate center to origin

o Step 2: Rotate view to -Z, up to +Y

'l O 0 0
o Step 3:Shear center-line to -Z axis & 1 & 8
o Step 4: Perspective 0 Z+.f /
l
0 0 ‘—1 0
l

1.

121

Perspective Projection

o Step 4: Perspective
o Points at z=-i stay at z=-i
o Points at z=-f stay at z=-f
o Points at z=0 goto z=+x O\\ ‘

o Points at z=-% goto z=-(i+f) N e 2

o x and y values divided by -z/i

o Straight lines stay straight 1 ¢ & €
0 1 0 0
o Depth ordering preserved in [-i,-f -
&P] 0 0 z+.f r
o Movement along lines distorted _ll
e 6 — @
! 122,

Perspective Projection

123

Perspective Projection

“Eye” plane
Top
Near Far
g
N
D
<3
OQ
T
\J
&"F
=2
View vector

A\

<

124

Perspective Projection

Visualizing division of x and y but not 7

N>

Perspective Projection

Motion in x,y

2D

Perspective Projection

Note that points on near plane fixed

Il

N>

127

Perspective Projection

Recall that points on far plane will
stay there...

e |

11

106

2D

128

Perspective Projection

When we also divide 7 points must
remain on straight lines

2D

129

Perspective Projection

Lines extend outside view volume

Ty
~
~
S e
~

h..
-
-
-
-

S
Eani
-

130

Perspective Projection

Motion in 7

iy
~
~
S
~

h..
-
-
-
-

S
e
-

131

Perspective Projection

Motion in 7

iy
~
~
S
~

h..
-
-
-
-

S
e
-

132

Perspective Projection

Motion in 7

iy
~
~
S
~

h..
-
-
-
-

S
e
-

Perspective Projection

Total motion

134

Perspective Projection

o Step |:Translate center to orange
o Step 2: Rotate view to -Z, up to +Y

o Step 3:Shear center-line to -Z axis
o Step 4: Perspective
o Step 5: center view volume

o Step 6: scale to canonical size

135

Perspective Projection

o Step |:Translate center to orange

} M,
o Step 2: Rotate view to -Z, up to +Y
o M,
o Step 5: center view volume
P } MO

o Step 6: scale to canonical size

M=M, M, M, ° | -,

136

Perspective Projection

o There are other ways to set up the
projection matrix

o View plane at z=0 zero
o Looking down another axis

o elcC...

o Functionally equivalent

137

Vanishing Points

o Consider a ray:

Vanishing Points

o |lgnore Z part of matrix
o X and Y will give location in image plane

o Assume image plane at z=-1

1 0 0 0 _
171 0 0
01 0 0
- [1,]=]0 1 0
Il 0 0 -1ffz
0 0 -1 0 :

139

Vanishing Points

D O e

o = OO

11 (1.

1,1,

oS O

-x/z

-ylz

Vanishing Points

o Assume d, = —1

p. +td.
[/1] [-x/2z] |-p. +t
]y/]w _—y/Z_ py+tdy
-p. +1

Lim [d.

[— +00 d

141

Vanishing Points

[.im d

[— +00 d

o All lines in direction d converge to same point in the
image plane -- the vanishing point

o Every point in plane is a v.p. for some set of lines

o Lines parallel to image plane (d, = 0) vanish at infinity

What’s a horizon?

X

— y-

142

-l- -.I. ,.“-

Perspective Iricks

-
- -

-
RN

"
-

-

2 .‘.l.
= -

EBR,

143

Right Looks Wrong (Sometimes)

From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995
144

Right Looks Wrong (Sometimes)

From WIRED Magazine

That tPhone Marketshare Chart: WTF?

US. SmartPhone Marketshare

Engadget’s photo. Since when Let's corvect the photo perspective.
is 19.5% bigger than 21 2%?

@—9o

Yow! The pie chart itself is distorded,
and the iPhone’s chunk, is Chart Perspective fixed
woved to the front!

Here it is overlaid with a pie chart using the same data.
There's no funiny business here — except for the
perspective tricks!

145

Strangeness

4
S
©
S
(%]
(%)
S
Q
%
S
2
=

by Hans Holbein the Younger

146

Ray Picking

o Pick object by picking point on screen

A

o Compute ray from pixel coordinates.

Ray Picking

o Transform from VWWorld to Screen is:
F e

X

~

Z

Wx
¥ 2 M Wy
WZ
WW

i

3

o |nverse:

B
. o
=

o What Z value?

148

Ray Picking

Depends on screen details,YMMV
O Reca” that. General idea should translate...

o Points at z=-i stay at z=-i
o Points at z=-f stay at z=-f

r(t) =p+td
r(i) =y +1(by—a,) | 2T ot/

Ire, S — e — S =
|

as = |Sy, Sy, —i]

149

Depth Distortion

o Recall depth distortion from perspective

o Interpolating in screen space different than in world

o Ok, for shading (mostly) Half way in world space
o Bad for texture \ \\
\v AN \v
World i e Screen
/;// ////
/
/ %
=y

150

Half way in screen space

S1=P1/M

///

Depth Distortion

3254 = Py/hy

So = Py/ho

N

jjss = P3/hg

Py

Depth Distortion

S1 =P/
\ Py
| NS = Py/iy
| JAS3 = P3/h3 /r
¥ = ZS-b- e /
SQZPQ/hQ : 171 Q:ZPiai

We know the S;, P;,and ©b;, but not the g¢;.

S1=P1/M

Depth Distortion

Depth Distortion

S1 =P/
\ P
| NSy = Py/hy
| JAS3 = P3/h3 7(
=S 5 ., |
SQZPQ/hQ _Z % Q= PZ'CL

S1=P1/M

Depth Distortion

S1=P1/M

B

TR

e

b

So = Py/hg

Independent of given vertex

locations.

Depth Distortion

Sq = Py/hy

S3 = P3/h3

XK = N iG0h,
i

Py

Py

/

Cé—zpi%

sz'bz'/hz' = (Z Pz'%) / (Z hjaj)
1 ? J

P3

bi/hi = ai/ (Z hjaj) W)
]

Depth Distortion

51=P1/h
\
T NSt = Pu/hy
| \S3=Rs/hg
/

59 = Pa/hg X =D S

P

Py

Linear equations in the

P
1
b/l = a5/ (Z hjaj) \Z)
J

% - (Z h]a,]) bi/hi - @& = 0 V2
J

S1=P1/M

B

TR

e

Depth Distortion

Sq = Py/hy

b

So = Py/hg

Linear equations in the ;.

Not invertible so add some
extra constraints.

S3 = P3/h3

XK = N iG0h,
i

Py

Py

Zh]a] bi/hi —CLZ' =0 \V/i
J

ZCLZ‘:Z[)Z'Zl
() (

158

Depth Distortion

S1=P1/M

‘\ P By

\ S4ZP4/h4

/ 53 =P3/h3 f

P IR

So = Py/ho X:Z‘Sibi CéZP.a.
1

For a line: a1 = hb;/(bphg + h1bo)
For a triangle: a1 = hohaby/(hoh3by + hih3b + hihobs)

Obvious Permutations for other coefficients. =

