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Today

2D Transformations
“Primitive” Operations

Scale, Rotate, Shear, Flip, Translate

Homogenous Coordinates

SVD

Start thinking about rotations...
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Introduction

Transformation: 
An operation that changes one configuration into another

For images, shapes, etc.
A geometric transformation maps positions that define the object to 
other positions

Linear transformation means the transformation is defined by a 
linear function... which is what matrices are good for.
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Some Examples

Images from Conan The Destroyer, 1984

Original

Uniform Scale

Rotation

Nonuniform Scale

Shear
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Mapping Function

c(x) = [195,120,58]

f (x) = x in old image

c0x= c( f (x))
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Linear -vs- Nonlinear

Linear (shear)

Nonlinear (swirl)
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Geometric -vs- Color Space

Linear Geometric
(flip)

Color Space Transform
(edge finding)
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Instancing

RHW

M.C. Escher, from Ghostscript 8.0 Distribution
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Instancing

RHW

Reuse geometric descriptions

Saves memory
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Linear is Linear

Polygons defined by points

Edges defined by interpolation between two 
points

Interior defined by interpolation between all 
points

Linear interpolation
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Linear is Linear

Composing two linear function is still linear

Transform polygon by transforming vertices

Scale
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Linear is Linear

Composing two linear function is still linear

Transform polygon by transforming vertices

f (x) = a+bx g( f ) = c+d f

g(x) = c+d f (x) = c+ad+bdx

g(x) = a0 +b0x
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Points in Space

Represent point in space by vector in 
Relative to some origin!

Relative to some coordinate axes!

Later we’ll add something extra...

Rn

Origin, 0

2

4

T]4,2[=pp= [4,2]T
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Basic Transformations

Basic transforms are: rotate, scale, and 
translate

Shear is a composite transformation!

Rotate

Translate

Scale

Shear  -- not really “basic”

Unif
or

m/is
otr

op
ic

Non
-u

nif
or

m/an
iso

tro
pic
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Linear Functions in 2D

x0 = f (x,y) = c1+ c2x+ c3y
y0 = f (x,y) = d1+d2x+d3y


x0

y0

�
=


tx
ty

�
+


Mxx Mxy
Myx Myy

�
·

x
y

�

x0 = t+M ·x
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Rotations

Rotate

pp ⎥
⎦

⎤
⎢
⎣

⎡ −
=

)Cos()(
)()Cos(

'
θθ

θθ

Sin
Sin

x

.707  -.707

.707   .707

y

x

45 degree rotation
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Rotations

Rotations are positive counter-clockwise

Consistent w/ right-hand rule

Don’t be different...

Note: 
rotate by zero degrees give identity
rotations are modulo 360 (or      )2π
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Rotations

Preserve lengths and distance to origin

Rotation matrices are orthonormal

 

In 2D rotations commute... 
But in 3D they won’t!

Det(R) = 1 6=�1
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Scales
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Scales

Diagonal matrices
Diagonal parts are scale in X and scale in Y directions

Negative values flip

Two negatives make a positive (180 deg. rotation)

Really, axis-aligned scales

Not axis-aligned...
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Shears

Shear

pp ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

'
xy

yx

H
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 1    1

 0    1

y

x

y
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Shears

Shears are not really primitive transforms

Related to non-axis-aligned scales

More shortly.....
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Translation

This is the not-so-useful way:

Translate

⎥
⎦

⎤
⎢
⎣

⎡
+=

y

x

t
t

pp'

Note that its not like the others.



�24

Arbitrary Matrices

For everything but translations we have:

Soon, translations will be assimilated as well

What does an arbitrary matrix mean?

x0 = A ·x
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Singular Value Decomposition

For any matrix,    , we can write SVD:

  where Q and R are orthonormal and S is diagonal

Can also write Polar Decomposition

  where Q is still orthonormal

A
TQSRA =

TQRSRA =

not the same Q
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Decomposing Matrices

We can force Q and R to have Det=1 so they are 
rotations

Any matrix is now:
Rotation:Rotation:Scale:Rotation

See, shear is just a mix of rotations and scales
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Composition

Matrix multiplication composites matrices

Several translations composted to one

Translations still left out...

BApp ='
“Apply A to p and then apply B to that result.”

CppBAApBp === )()('

uCpBtBAptApBp +=+=+= )('
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Composition

shear

x

y

x

y

y

x

x

shear

shear

Transformations built up 
from others

SVD builds from scale 
and rotations

Also build other ways

i.e. 45 deg rotation built 
from shears
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Move to one higher dimensional space

Append a 1 at the end of the vectors

For directions the extra coordinate is a zero

Homogeneous Coordiantes

⎥
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Homogeneous Translation

⎥
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⎥
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⎢
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The tildes are for clarity to 
distinguish homogenized from 

non-homogenized vectors.



�31

Homogeneous Others

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

100
0
0

~ AA

Now everything looks the same...
Hence the term “homogenized!”
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Compositing Matrices

Rotations and scales always about the origin

How to rotate/scale about another point?

-vs-
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Rotate About Arb. Point

Step 1: Translate point to origin

Translate (-C) 
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Rotate About Arb. Point

Step 1: Translate point to origin

Step 2: Rotate as desired
Translate (-C) 

Rotate (θ) 
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Step 1: Translate point to origin

Step 2: Rotate as desired

Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C) 

Rotate (θ) 

Translate (C) 

pApRTTp ~~)('~ =−=
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Scale About Arb. Axis

Diagonal matrices scale about coordinate 
axes only:

Not axis-aligned
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Scale About Arb. Axis

Step 1: Translate axis to origin
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Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the 
coordinate axes
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Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the 
coordinate axes

Step 3: Scale as desired
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Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the 
coordinate axes

Step 3: Scale as desired

Steps 4&5: Undo 2 and 1 (reverse order)
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Order Matters!

The order that matrices appear in matters

Some special cases work, but they are special

But matrices are associative

Think about efficiency when you have many 
points to transform...

A ·B 6= BA

(A ·B) ·C= A · (B ·C)
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Matrix Inverses

In general:        undoes effect of  

Special cases:
Translation: negate     and 

Rotation: transpose

Scale: invert diagonal  (axis-aligned scales)

Others:
Invert matrix

Invert SVD matrices  

A�1 A

tx ty
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Point Vectors / Direction Vectors

Points in space have a 1 for the “w” 
coordinate

What should we have for          ?
 

Directions not the same as positions

Difference of positions is a direction

Position + direction is a position

Direction + direction is a direction

Position + position is nonsense

a�b
w= 0
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Somethings Require Care

For example normals do not transform normally

M(a⇥b) 6= (Ma)⇥ (Mb)
Use inverse transpose of the matrix for normals.  

See text book.
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Suggested Reading

Fundamentals of Computer Graphics by 
Pete Shirley

Chapter 5

And re-read chapter 4 if your linear algebra is rusty!



CS-184: Computer Graphics
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Rotations
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University of California, Berkeley

V2008-F-05-1.0
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Today

Transformations in 3D

Rotations
Matrices

Euler angles

Exponential maps

Quaternions
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3D Transformations

Generally, the extension from 2D to 3D is 
straightforward

Vectors get longer by one

Matrices get extra column and row

SVD still works the same way

Scale, Translation, and Shear all basically the same

Rotations get interesting 
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Ã=

2

664

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

3

775

Translations

For 2D

For 3D

Ã=

2

4
1 0 tx
0 1 ty
0 0 1

3

5
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Ã=

2

664

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

3

775

Ã=

2

4
sx 0 0
0 sy 0
0 0 1

3

5 For 2D

For 3D

Scales

(Axis-aligned!)
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Shears

For 2D

For 3D

(Axis-aligned!)

Ã=

2

4
1 hxy 0
hyx 1 0
0 0 1

3

5

Ã=

2

664

1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

3

775
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Shears

Ã=

2

664

1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

3

775

Shears y into x
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Rotations

3D Rotations fundamentally more complex 
than in 2D

2D: amount of rotation

3D: amount and axis of rotation

-vs-

2D 3D
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Rotations

Rotations still orthonormal

 

Preserve lengths and distance to origin

3D rotations DO NOT COMMUTE!

Right-hand rule

Unique matrices

Det(R) = 1 6=�1

DO NOT COMMUTE!
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Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third 
out of plane axis
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Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third 
out of plane axis

R=

cos(θ) �sin(θ)
sin(θ) cos(θ)

�
R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

Note: looks same as R̃
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Axis-aligned 3D Rotations

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5

R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

x̂

ŷ

ẑ

“Z is in your face”

ẑ

x̂

ŷ
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Axis-aligned 3D Rotations

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5

R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

x̂

ŷ

ẑ

x̂

ŷ

ẑ
Also right handed “Zup”
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Axis-aligned 3D Rotations

Also known as “direction-cosine” matrices

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5 R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

ẑ

x̂ ŷ
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Arbitrary Rotations

Can be built from axis-aligned matrices:

Result due to Euler... hence called 
  Euler Angles
Easy to store in vector

But NOT a vector.

R= rot(x,y,z)

R= Rẑ ·Rŷ ·Rx̂
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Arbitrary Rotations

R= Rẑ ·Rŷ ·Rx̂

R

RẑRŷRx̂
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Arbitrary Rotations

Allows tumbling

Euler angles are non-unique

Gimbal-lock

Moving -vs- fixed axes
Reverse of each other
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Exponential Maps

Direct representation of arbitrary rotation

AKA: axis-angle, angular displacement vector

Rotate    degrees about some axis 

Encode     by length of vectorθ
θ

θ
θ= |r|

r̂
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Exponential Maps

Given vector     , how to get matrix

Method from text:
1. rotate about x axis to put r into the x-y plane
2. rotate about z axis align r with the x axis
3. rotate    degrees about x axis
4. undo #2 and then #1
5. composite together 

r R

θ
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Exponential Maps

Vector expressing a point has two parts
      does not change

      rotates like a 2D point

x

r

x

⊥x ⊥xr

⊥x
x



�66

Exponential Maps

θ

x

x0

�x? = r̂⇥ (r̂⇥x) x?

x

r

x

⊥x ⊥xr

x` = r̂⇥x

�x?cos(θ)

x` sin(θ)
x0 = x|| +x` sin(θ)+x?cos(θ)
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x0 = r̂(r̂ ·x)
+sin(θ)(r̂⇥x)
�cos(θ)(r̂⇥ (r̂⇥x))

Exponential Maps

Rodriguez Formula

x

r

x

!x
!x

r

Actually a minor variation ...

Linear in x
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Exponential Maps

Building the matrix

x0 = ((r̂r̂t)+ sin(θ)(r̂⇥)� cos(θ)(r̂⇥)(r̂⇥))x

(r̂⇥) =

2

4
0 �r̂z r̂y
r̂z 0 �r̂x
�r̂y r̂x 0

3

5

Antisymmetric matrix
(a⇥)b= a⇥b
Easy to verify by expansion
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Exponential Maps

Allows tumbling

No gimbal-lock!

Orientations are space within π-radius ball

Nearly unique representation 

Singularities on shells at 2π
Nice for interpolation
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ex = 1+
x
1!

+
x2

2!
+
x3

3!
+ · · ·

Exponential Maps

Why exponential?

Recall series expansion of ex
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Why exponential?
Recall series expansion of 
Euler: what happens if you put in     for

eiθ = 1+
iθ
1!

+
�θ2

2!
+
�iθ3

3!
+
θ4

4!
+ · · ·

Exponential Maps

ex
iθ x

=
✓
1+

�θ2

2!
+
θ4

4!
+ · · ·

◆
+ i

✓
θ
1!

+
�θ3

3!
+ · · ·

◆

= cos(θ)+ isin(θ)
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Why exponential?

Exponential Maps

e(r̂⇥)θ = I+ (r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+

(r̂⇥)3θ3

3!
+

(r̂⇥)4θ4

4!
+ · · ·

e(r̂⇥)θ = I+ (r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

(r̂⇥)3 =�(r̂⇥)But notice that:
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Exponential Maps

e(r̂⇥)θ = I+ (r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

e(r̂⇥)θ = (r̂⇥)
✓
θ
1!
� θ3

3!
+ · · ·

◆
+ I+(r̂⇥)2

✓
+
θ2

2!
� θ4

4!
+ · · ·

◆

e(r̂⇥)θ = (r̂⇥)sin(θ)+ I+(r̂⇥)2(1� cos(θ))
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Quaternions

More popular than exponential maps 

Natural extension of 

Due to Hamilton (1843)
Interesting history 

Involves “hermaphroditic monsters”

eiθ = cos(θ)+ isin(θ)
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i2 = j2 = k2 =�1

Quaternions

Uber-Complex Numbers

q = (z1,z2,z3,s) = (z,s)
q = iz1+ jz2+ kz3+ s

i j = k ji=�k
jk = i k j =�i
ki= j ik =� j



�76

||q||2 = z · z+ s2 = q · q
⇤

Quaternions

Multiplication natural consequence of defn. 

Conjugate

Magnitude

q · p = (zqsp+ zpsq+ zp⇥ zq , spsq� zp · zq)

q
⇤ = (�z,s)
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Quaternions
Vectors as quaternions

Rotations as quaternions

Rotating a vector

Composing rotations

v = (v,0)

r = (r̂sinθ
2
,cos

θ
2
)

x

0 = r · x · r

⇤

r = r1 · r2

Compare to Exp. Map
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Quaternions

No tumbling

No gimbal-lock

Orientations are “double unique”

Surface of a 3-sphere in 4D

Nice for interpolation

||r|| = 1



Interpolation

�79
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Rotation Matrices

Eigen system 
One real eigenvalue 

Real axis is axis of rotation

Imaginary values are 2D rotation as complex number

Logarithmic formula 

θ= cos�1
✓
Tr(R)�1

2

◆
(r̂⇥) = ln(R) =

θ
2sinθ

(R�RT)

Similar formulae as for exponential...
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Rotation Matrices

Consider:

Columns are coordinate axes after 
transformation (true for general matrices)

Rows are original axes in original system  
(not true for general matrices)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

100
010
001

zzzyzx

yzyyyx

xzxyxx

rrr
rrr
rrr

RI
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Note:

Rotation stuff in the book is a bit weak... 
luckily you have these nice slides!
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Today

Windowing and Viewing Transformations
Windows and viewports

Orthographic projection

Perspective projection
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Screen Space

Monitor has some number of pixels
e.g. 1024 x 768

Some sub-region used for given program
You call it a window

Let’s call it a viewport instead

[0,0]

[1024,768]

[60,350]

[690,705]

[0,0]

[1024,768]



�86

Screen Space

May not really be a “screen”
Image file

Printer

Other

Little pixel details

Sometimes odd
Upside down

Hexagonal
From Shirley textbook.
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Screen Space

Viewport is somewhere on screen
You probably don’t care where

Window System likely manages this detail

Sometimes you care exactly where

Viewport has a size in pixels
Sometimes you care (images, text, etc.)

Sometimes you don’t (using high-level library)



Screen Space
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Integer Pixel Addresses

i=3

j=5

 10 × 10  Image Resolution
-0.5,-0.5

nx-0.5,ny-0.5



Screen Space
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Float Pixel Coordinates

u= 0.35 = (i + 0.5)/nx 0,0

1,1

v= 0.55 = (j + 0.5)/ny 
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Canonical View Space

Canonical view region

2D:  [-1,-1] to [+1,+1]

Fr
om

 S
hi

rl
ey

 t
ex

tb
oo

k.

-1,-1

+1,+1

x=0.0,  y=0.0
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Canonical View Space

Canonical view region

2D:  [-1,-1] to [+1,+1]
x

y

y

(1,1)

(-1,-1)

x

(nx-0.5, -0.5)

(-0.5, ny-0.5)

x

y

(1,-1)

(-1,1)

(nx/2,-ny/2)

(-nx/2,ny/2)

y

x

reflect-y

translate

scale

From Shirley textbook.
(Image coordinates are up-side-down.)2

4
x0
y0
1

3

5 =

2

64

nx
2 0

nx�1
2

0 ny
2

ny�1
2

0 0 1

3

75

2

4
x
y
1

3

5�
i
j Remove minus for right-side-up
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Canonical View Space

Canonical view region

2D:  [-1,-1] to [+1,+1]

Define arbitrary window and define objects

Transform window to canonical region

Do other things (we’ll see clipping latter)

Transform canonical to screen space

Draw it.

Fr
om

 S
hi

rl
ey

 t
ex

tb
oo

k.
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Canonical View Space

World Coordinates Canonical Screen Space

(Meters) (Pixels)

Note distortion issues...
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Projection

Process of going from 3D to 2D

Studies throughout history (e.g. painters)

Different types of projection
Linear

Orthographic

Perspective

Nonlinear
Orthographic is special case of
perspective...

Many special cases in books just 
one of these two...}



Perspective Projections

�95
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Linear Projection

Projection onto a planar surface

Projection directions either
Converge to a point

Are parallel (converge at infinity)
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Linear Projection

A 2D view

OrthographicPerspective
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Linear Projection

Orthographic Perspective
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Linear Projection

Orthographic Perspective



�100

OrthographicPerspective

Note how different things can be seen

Parallel lines “meet” at infinity

Linear Projection

A 2D view
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Orthographic Projection

No foreshortening

Parallel lines stay parallel

Poor depth cues
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Canonical View Space

Canonical view region

3D:  [-1,-1,-1] to [+1,+1,+1]

Assume looking down -Z axis
Recall that “Z is in your face”

[1,1,1] [-1,-1,-1]

-Z
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Orthographic Projection

Convert arbitrary view volume to canonical

[1,1,1] [-1,-1,-1]

-Z
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Orthographic Projection

View vector

Up vector

Right = view X up 

Origin

Center

near,top,right

far,bottom,left

*Assume up is perpendicular to view.
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Orthographic Projection

Step 1: translate center to origin
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Orthographic Projection

Step 1: translate center to origin

Step 2: rotate view to -Z and up to +Y
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Orthographic Projection

Step 1: translate center to origin

Step 2: rotate view to -Z and up to +Y
Step 3: center view volume
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Orthographic Projection

Step 1: translate center to origin

Step 2: rotate view to -Z and up to +Y
Step 3: center view volume

Step 4: scale to canonical size
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Orthographic Projection

Step 1: translate center to origin

Step 2: rotate view to -Z and up to +Y
Step 3: center view volume

Step 4: scale to canonical size

M= S ·T2 ·R ·T1
M=Mo ·Mv
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Perspective Projection

Foreshortening: further objects appear smaller

Some parallel line stay parallel, most don’t

Lines still look like lines

Z ordering preserved (where we care)
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Perspective Projection

Pinhole a.k.a center of projection

Im
ag

e 
fr

om
 D

. F
or

sy
th
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Perspective Projection

Foreshortening: distant objects appear smaller

Im
ag

e 
fr

om
 D

. F
or

sy
th
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Perspective Projection

Vanishing points
Depend on the scene

Not intrinsic to camera

“One point perspective”
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Perspective Projection

Vanishing points
Depend on the scene

Nor intrinsic to camera

“Two point perspective”
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Perspective Projection

Vanishing points
Depend on the scene

Not intrinsic to camera

“Three point perspective”
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Perspective Projection

u

v
n

View Frustum
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Perspective Projection

View
Up

Distance to image plane
i

Y

-Z

Top
t

Bottom
b

Near
n

Far
f

Center
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Perspective Projection

Step 1: Translate center to origin

Y

-Z
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Perspective Projection

Step 1: Translate center to origin

Step 2: Rotate view to -Z, up to +Y

Y

-Z
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Perspective Projection

Step 1: Translate center to origin

Step 2: Rotate view to -Z, up to +Y
Step 3: Shear center-line to -Z axis

Y

-Z
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Perspective Projection

Step 1: Translate center to origin

Step 2: Rotate view to -Z, up to +Y
Step 3: Shear center-line to -Z axis

Step 4: Perspective
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Perspective Projection

Step 4: Perspective
Points at z=-i stay at z=-i
Points at z=-f stay at z=-f
Points at z=0 goto z=±∞
Points at z=-∞ goto z=-(i+f)

x and y values divided by -z/i

Straight lines stay straight
Depth ordering preserved in [-i,-f ]

Movement along lines distorted
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Perspective Projection

WRONG!
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Perspective Projection

ẑ

“Eye” plane

Top

Near Far

So
me h

or
izo

nt
al 
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View vector
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Perspective Projection

ẑ

Visualizing division of x and y but not z
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Perspective Projection

ẑ

Motion in x,y
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Perspective Projection

ẑ

Note that points on near plane fixed
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Perspective Projection

ẑ

Recall that points on far plane will
stay there...
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Perspective Projection

ẑ

When we also divide z points must
remain on straight lines
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Perspective Projection

ẑ

Lines extend outside view volume
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Perspective Projection

ẑ

Motion in z
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Perspective Projection

ẑ

Motion in z

�∞
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Perspective Projection

ẑ

Motion in z

�∞
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Perspective Projection

ẑ

Total motion
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Perspective Projection

Step 1: Translate center to orange

Step 2: Rotate view to -Z, up to +Y
Step 3: Shear center-line to -Z axis

Step 4: Perspective

Step 5: center view volume

Step 6: scale to canonical size

-Z
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Perspective Projection

Step 1: Translate center to orange

Step 2: Rotate view to -Z, up to +Y
Step 3: Shear center-line to -Z axis

Step 4: Perspective

Step 5: center view volume

Step 6: scale to canonical size

-ZM=Mo ·Mp ·Mv

Mo

Mp

Mv}

}

}
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Perspective Projection

There are other ways to set up the 
projection matrix

View plane at z=0 zero

Looking down another axis

etc...

Functionally equivalent
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r(t) = p+ t d

Vanishing Points

Consider a ray:

dp
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Vanishing Points

Ignore Z part of matrix 

X and Y will give location in image plane

Assume image plane at z=-i
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Vanishing Points
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Vanishing Points

Assume dz =�1
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Vanishing Points

All lines in direction d converge to same point in the 
image plane -- the vanishing point

Every point in plane is a v.p. for some set of lines

Lines parallel to image plane (         ) vanish at infinity

⎥
⎦

⎤
⎢
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⎡
=

±∞→ y

x

d
d

t
Lim

dz = 0

What’s a horizon?
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Right Looks Wrong (Sometimes)
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Correction of Geometric Perceptual Distortions in Pictures.

Denis Zorin, Alan H. Barr

California Institute of Technology, Pasadena, CA 91125

Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.










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Correction of Geometric Perceptual Distortions in Pictures.

Denis Zorin, Alan H. Barr

California Institute of Technology, Pasadena, CA 91125

Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.









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From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995
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From WIRED Magazine



Strangeness
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The Ambassadors
by Hans Holbein the Younger
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Ray Picking

Pick object by picking point on screen

Compute ray from pixel coordinates.
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Ray Picking

Transform from World to Screen is:

Inverse:

What Z value?
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r(t) = aw+ t(bw�aw) bs = [sx,sy,� f ]

as = [sx,sy,�i]

Ray Picking

Recall that:
Points at z=-i stay at z=-i
Points at z=-f stay at z=-f

r(t) = p+ t d

Depends on screen details, YMMV
General idea should translate...
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Depth Distortion

Recall depth distortion from perspective
Interpolating in screen space different than in world

Ok, for shading (mostly)

Bad for texture

ScreenWorld

Half way in screen space

Half way in world space



Depth Distortion
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P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4



Depth Distortion
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P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4

X =
X

i

Sibi Q =
X

i

Piai

We know the     ,      , and      ,  but not the     .Si Pi bi ai
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Depth Distortion
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Independent of given vertex
locations.
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Linear equations in the     .
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Linear equations in the     .
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Not invertible so add some
extra constraints.



Depth Distortion
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For a line: a1 = h2bi/(b1h2 + h1b2)

a1 = h2h3b1/(h2h3b1 + h1h3b2 + h1h2b3)For a triangle:

Obvious Permutations for other coefficients.


