CS-184: Computer Graphics

Lecture #4: 2D Transformations

Prof. James O’Brien
University of California, Berkeley

Today

o 2D Transformations
o “Primitive” Operations
o Scale, Rotate, Shear, Flip, Translate

o Homogenous Coordinates
o SVD

o Start thinking about rotations...

Introduction

o Transformation:

An operation that changes one configuration into another

o For images, shapes, etc.

A geometric transformation maps positions that define the object to
other positions

Linear transformation means the transformation is defined by a
linear function... which is what matrices are good for.

Some Examples

|
»
.'/ ’

Originl

Images from Conan The Destroyer, 1984

Mapping Function

f(x) = x in old image

’. : - ‘
™

{
iy
$2/
L e

c(x) = [195,120, 58]

Linear -vs- Nonlinear

Nonlinear (swirl)

Linear (shear)

Geometric -vs- Color Space

Color Space Transform
(edge finding)

Linear Geometric
(flip)

Instancing

M.C. Escher, from Ghostscript 8.0 Distribution

Instancing

o Reuse geometric descriptions

o Saves memory

Linear is Linear

o Polygons defined by points

o Edges defined by interpolation between two
points

o Interior defined by interpolation between all
points

o Linear interpolation

Linear is Linear

o Composing two linear function is still linear

o Transform polygon by transforming vertices

x® <

11

Linear is Linear

o Composing two linear function is still linear

o Transform polygon by transforming vertices

f(x)=a+bx g(f)=c+df

g(x) =c+df(x) =c+ad+ bdx

g(x)=da +bx

Points in Space

o Represent point in space by vector in R"

o Relative to some origin!

o Relative to some coordinate axes!

o Later we’ll add something extra...
i p=1[4,2]"

3

Origin, 0

13

13

Basic Transformations

o Basic transforms are: rotate, scale, and
translate

Rotate Scale

AA A A

Shear -- not really “basic”

Translate

14

14

Linear Functions in 2D

,—

f(x,y) = c1+cox+c3y
Y = f(x,y) =d\ +dox+ dsy

X) _tx_ M oM xy_ X
Y ,_ ty| [(MyxMyy| |y

Rotate

Rotations

'Cos(0)

_ Sin(0)

- Sin(0)

Cos(0) :

45 degree rotation

1112 1
10 2
9 3

3 707 -.707
76 3 707 .707

>

16

Rotations

o Rotations are positive counter-clockwise
o Consistent w/ right-hand rule

o Don’t be different...

o Note:

o rotate by zero degrees give identity
o rotations are modulo 360 (or 27T)

17

17

Rotations

o Preserve lengths and distance to origin
o Rotation matrices are orthonormal

o Det(R) =1+# —1

o In 2D rotations commute...

o But in 3D they won’t!

18

18

Scales

XS
">
TEe
’66 g @Q
s
& 3
e §
& >
f h %°°
Scale
A
y

Y

Y

19

19

Scales

o Diagonal matrices
o Diagonal parts are scale in X and scale in Y directions
o Negative values flip
o Two negatives make a positive (180 deg. rotation)

o Really, axis-aligned scales

Not axis-aligned... 20

20

Shear

Shears

21

Shears

o Shears are not really primitive transforms
o Related to non-axis-aligned scales

o More shortly.....

22

22

Translation

o This is the not-so-useful way:

AA o)
p=p+ y

Translate

Note that its not like the others.

p. .

23

Arbitrary Matrices

o For everything but translations we have:

X =A-X
o Soon, translations will be assimilated as well

o What does an arbitrary matrix mean!

24

Singular Value Decomposition

o For any matrix, A, we can write SVD:
A =QSR'

where Q and R are orthonormal and S is diagonal

o Can also write Polar Decomposition
A =QRSR'

not the same Q

where Q is still orthonormal

25

25

Decomposing Matrices

o We can force Q and R to have Det=1 so they are
rotations

o Any matrix is now:

o Rotation:Rotation:Scale:Rotation

o See, shear is just a mix of rotations and scales

26

26

Composition

o Matrix multiplication composites matrices
p'=BAp

“Apply A to p and then apply B to that result.”
p'=B(Ap)=(BA)p=Cp

o Several translations composted to one

o Translations still left out...

p'=B(Ap+1t) =§I§p+Bt =Cp+u

b,

Composition

shear

shear

shear

Transformations built up
from others

SVD builds from scale
and rotations

Also build other ways

i.e. 45 deg rotation built
from shears

28

28

Homogeneous Coordiantes

o Move to one higher dimensional space

o Append a 1 at the end of the vectors
P
P=\p,

[1

o For directions the extra coordinate is a zero

28

Homogeneous Iranslation

1 0 ¢ 1[p,

p'=|0 1 7 ||p,

[O 0 1f|1
p'= Ap

The tildes are for clarity to
distinguish homogenized from
non-homogenized vectors.

30

Homogeneous Others

Now everything looks the same...
Hence the term “homogenized!”

31

Compositing Matrices

o Rotations and scales always about the origin

o How to rotate/scale about another point?

L - §

/

32

Rotate About Arb. Point

o Step |:Translate point to origin

/O\
A Translate (-C)

Rotate About Arb. Point

o Step |:Translate point to origin

o Step 2: Rotate as desired

A

Translate (-C)

//\ Rotate (0)

Rotate About Arb. Point

o Step |:Translate point to origin
o Step 2: Rotate as desired

o Step 3: Put back where it was Translate (-C)

Rotate (0)
(; O

Translate (C)

p'= CDRTp = Ap
|

Don’t negate the 1...

35

Scale About Arb. Axis

o Diagonal matrices scale about coordinate
axes only:

>

5

Not axis-aligned

ol

.
L/

Scale About Arb. Axis

o Step |:Translate axis to origin

&« A

Scale About Arb. Axis

o Step |:Translate axis to origin

o Step 2: Rotate axis to align with one of the
coordinate axes

& T

Scale About Arb. Axis

o Step |:Translate axis to origin

o Step 2: Rotate axis to align with one of the
coordinate axes

o Step 3: Scale as desired

S5

Scale About Arb. Axis

o Step |:Translate axis to origin

o Step 2: Rotate axis to align with one of the
coordinate axes

o Step 3: Scale as desired
o Steps 4&5: Undo 2 and | (reverse order)

¥

O O

Order Matters!

o The order that matrices appear in matters
A-B # BA

o Some special cases work, but they are special

o But matrices are associative

(A-B)-C=A-(B-C)

o Think about efficiency when you have many
points to transform...

Matrix Inverses

o In general: A~ ' undoes effect of A

o Special cases:
o Translation: negate ’x and [y
o Rotation: transpose

o Scale: invert diagonal (axis-alighed scales)

o Others:

o |lnvert matrix

o |Invert SVYD matrices

42

42

Point Vectors / Direction Vectors

o Points in space have a 1 for the “w”
coordinate

o What should we have for g — b !
ow = ()
o Directions not the same as positions
o Difference of positions is a direction
o Position + direction is a position
o Direction + direction is a direction

o Position + position is honsense

43

43

Somethings Require Care

Mn

7

s>

Nn

4/th

For example normals do not transform normally

M(a x b) # (Ma)

x (Mb)

Use inverse transpose of the matrix for normals.
See text book.

44

3D Transformations

o Generally, the extension from 2D to 3D is
straightforward

o Vectors get longer by one
o Matrices get extra column and row
o SVD still works the same way

o Scale, Translation, and Shear all basically the same

o Rotations get interesting

45

45

Translations

For 2D

For 3D

>

o R - B e R

- & &

Cn
=

o oF
o -

' ©
- £ O

o & -

Scales

— O O &

For 2D

For 3D

(Axis-aligned!)

Shears

For 2D

For 3D

(Axis-aligned!)

Shears

1
By, A1
haf hzy
0

Shears y into x

Rotations

o 3D Rotations fundamentally more complex
than in 2D

o 2D:amount of rotation

o 3D:amount and axis of rotation

S

2D 3D

50

50

Rotations

o Rotations still orthonormal
0 D@t(R) — 1 # —1

o Preserve lengths and distance to origin

o 3D rotations DO NOT COMMUTE!
o Right-hand rule

o Unique matrices

Axis-aligned 3D Rotations

o 2D rotations implicitly rotate about a third
out of plane axis

9,

Axis-aligned 3D Rotations

o 2D rotations implicitly rotate about a third
out of plane axis

cos(B) —sin(0) O
R= [sin(0) cos(B) O
0 8 1

cos(0) —sin(0)
sin(0) cos(6)

@ Note: looks same as R

Axis-aligned 3D Rotations

13- 8 0
0 cos(B) —sin(0)
0 sin(0) cos(0)
- cos(0) 0 sin(0)
0 1 0
| —sin(0) 0 cos(6)
'cos(0) —sin(0)
sin(0) cos(0)
0 0

“Z is in your face”

Yy

€

N\ AN

Z 54

v><>

Axis-aligned 3D Rotations

- o Also right handed “Zup”

- cos(0) 0 sin(0) :,
Bel 0 1 0
—sin(0) 0 cos(0) i 9
cos(0) —sin(0) O /g(:
R.= [sin(B) cos(B) O s amenia ¥ £\ mascomss
[y e 1

56

o Also known as “direction-cosine’” matrices

Axis-aligned 3D Rotations

1 0 0
0 cos(B) —sin(0)
0 sin(0)

cos(0) |

- cos(0)
R= 0
0) —sin(0) O
0) cos(B) O
ot

0 sin(0)

56

Arbitrary Rotations

o Can be built from axis-alighed matrices:

R =R:-R; R;

o Result due to Euler... hence called

Euler Angles

o Easy to store in vector

R = rot(x, y, z)

o But NOT a vector.

Arbitrary Rotations

R =R:-R;-R;

Arbitrary Rotations

o Allows tumbling
o Euler angles are non-unique

o Gimbal-lock

o Moving -vs- fixed axes

o Reverse of each other

59

Exponential Maps

o Direct representation of arbitrary rotation
o AKA: axis-angle, angular displacement vector
o Rotate O degrees about some axis

o Encode O by length of vector .

0=|r| 5

60

Quaternions

o Due to Hamilton (1843)

o Interesting history

o Involves “hermaphroditic monsters”

61

61

Quaternions

o Uber-Complex Numbers

q — (217227Z37S) - (sz)

q =121+ j2o +kzz3+ S
i b

ki=j ik=—j

62

Quaternions
o Multiplication natural consequence of defn.
a-p = (ZgSp+2pSq+2p X 2q , SpSq—2Zp-Zg)
o Conjugate
a = (-2,5)
o Magnitude

||<1H2:Z‘Z‘|‘52=q°q>k

63

Quaternions

o Vectors as quaternions
v = (V,O)

o Rotations as quaternions

= (f‘sin6 COSe)
Y 2

o Rotating a vector

/ Xk
X —¥FT*X*¥§

o Composing rotations
r=r1-m

64

64

Quaternions

o No tumbling

o No gimbal-lock

o Orientations are “double unique”

o Surface of a 3-sphere in 4D

o Nice for interpolation

[l = 1

65

Interpolation

66

Rotation Matrices

o Eigen system
o One real eigenvalue
o Real axis is axis of rotation

o Imaginary values are 2D rotation as complex number

67

67

Rotation Matrices

o Consider:

e = il 0 0
e . 1o 1 0
ey -0 0 1

zX Zy zz

o Columns are coordinate axes after
transformation (true for general matrices)

o Rows are original axes in original system
(not true for general matrices)

