CS-184: Computer Graphics

Lecture #4:2D Transformations

Prof. James O'Brien University of California, Berkeley

V2008-F-04-1.0

2D Transformations "Primitive" Operations

• Scale, Rotate, Shear, Flip, Translate

- Homogenous Coordinates
- SVD
- Start thinking about rotations...

Introduction

• Transformation:

An operation that changes one configuration into another

• For images, shapes, etc.

A geometric transformation maps positions that define the object to other positions

Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Original

Uniform Scale

Rotation

Nonuniform Scale

Mapping Function

f(x) = x in old image

c(x) = [195, 120, 58]

c'x = c(f(x))

5

Linear -vs- Nonlinear

Nonlinear (swirl)

Linear (shear)

Geometric -vs- Color Space

Color Space Transform (edge finding)

Linear Geometric (flip)

Instancing

Instancing

- Reuse geometric descriptions
- Saves memory

Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation

Linear is Linear

Composing two linear function is still linear
 Transform polygon by transforming vertices

Linear is Linear

Composing two linear function is still linear
 Transform polygon by transforming vertices

$$f(x) = a + bx \qquad g(f) = c + df$$

g(x) = c + df(x) = c + ad + bdx

g(x) = a' + b'x

Points in Space

- Represent point in space by vector in \mathbb{R}^n
 - Relative to some origin!
 - Relative to some coordinate axes!
- Later we'll add something extra...

Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!

Rotate

Scale

14

Linear Functions in 2D

$$x' = f(x, y) = c_1 + c_2 x + c_3 y$$

$$y' = f(x, y) = d_1 + d_2 x + d_3 y$$

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} t_x\\t_y \end{bmatrix} + \begin{bmatrix} M_{xx} & M_{xy}\\M_{yx} & M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x\\y \end{bmatrix}$$

 $\mathbf{x}' = \mathbf{t} + \mathbf{M} \cdot \mathbf{x}$

Rotations

Rotate

Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don't be different...
- Note:
 - rotate by zero degrees give identity
 rotations are modulo 360 (or 2π)

Rotations

- Preserve lengths and distance to origin
 Rotation matrices are orthonormal
 Det(**R**) = 1 ≠ −1
- In 2D rotations commute...
 - But in 3D they won't!

Scales

	sotropic janisotropic
A A Ministerin	Ason Aon Minton anisotropic

 $\mathbf{p'} = \begin{bmatrix} s_x & 0\\ 0 & s_y \end{bmatrix} \mathbf{p}$

Scale

Scales

- Diagonal matrices
 - Diagonal parts are scale in X and scale in Y directions
 - Negative values flip
 - Two negatives make a positive (180 deg. rotation)
 - Really, axis-aligned scales

Shears

Shears are not really primitive transforms
Related to non-axis-aligned scales
More shortly.....

Translation

• This is the not-so-useful way:

$$\bigwedge \rightarrow \bigwedge \qquad \mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Translate

Note that its not like the others.

23

Arbitrary Matrices

\circ For everything but translations we have: $\mathbf{x}' = \mathbf{A} \cdot \mathbf{x}$

Soon, translations will be assimilated as well

• What does an arbitrary matrix mean?

Singular Value Decomposition

• For any matrix, A, we can write SVD: $A = QSR^{T}$

where Q and R are orthonormal and S is diagonal

• Can also write Polar Decomposition $A = QRSR^{T}$

where Q is still orthonormal

-not the same Q

Decomposing Matrices

- We can force Q and R to have Det=1 so they are rotations
- Any matrix is now:
 - Rotation:Rotation:Scale:Rotation
 - See, shear is just a mix of rotations and scales

Composition

Matrix multiplication composites matrices
 p' = BAp

"Apply A to p and then apply B to that result."

 $\mathbf{p'} = \mathbf{B}(\mathbf{A}\mathbf{p}) = (\mathbf{B}\mathbf{A})\mathbf{p} = \mathbf{C}\mathbf{p}$

Several translations composted to one
Translations still left out...
p' = B(Ap + t) = p + Bt = Cp + u

Composition

Transformations built up from others SVD builds from scale and rotations Also build other ways i.e. 45 deg rotation built from shears

Homogeneous Coordiantes

Move to one higher dimensional space

• Append a 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \widetilde{\mathbf{p}} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

• For directions the extra coordinate is a zero

Homogeneous Translation

$$\widetilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

 $\widetilde{\mathbf{p}}' = \widetilde{\mathbf{A}}\widetilde{\mathbf{p}}$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

 $\widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

Rotations and scales always about the origin
How to rotate/scale about another point?

-VS-

Rotate About Arb. Point

• Step I: Translate point to origin

Translate (-C)

Rotate About Arb. Point

- Step I: Translate point to origin
- Step 2: Rotate as desired

Translate (-C)

Rotate (θ)

Rotate About Arb. Point

- Step I: Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

Translate (-C)

Rotate (θ)

Translate (C)

 $\widetilde{\mathbf{p}}' = (-\mathbf{T})\mathbf{R}\mathbf{T}\widetilde{\mathbf{p}} = \mathbf{A}\widetilde{\mathbf{p}}$

Don't negate the 1...

Scale About Arb. Axis

Diagonal matrices scale about coordinate axes only:

Not axis-aligned

• Step I: Translate axis to origin

- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

0

Steps 4&5: Undo 2 and I (reverse order)

40

Order Matters!

- \circ The order that matrices appear in matters $\mathbf{A}\cdot\mathbf{B}\neq\mathbf{B}\mathbf{A}$
- Some special cases work, but they are special
 But matrices are associative

 (A · B) · C = A · (B · C)
- Think about efficiency when you have many points to transform...

Matrix Inverses

- \circ In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:
 - Translation: negate t_x and t_y
 - Rotation: transpose
 - Scale: invert diagonal (axis-aligned scales)
- Others:
 - Invert matrix
 - Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the "w" coordinate
- What should we have for $\mathbf{a} \mathbf{b}$?
 - $\circ w = 0$
 - Directions not the same as positions
 - Difference of positions is a direction
 - Position + direction is a position
 - Direction + direction is a direction
 - Position + position is nonsense

Somethings Require Care

For example normals do not transform normally $\mathbf{M}(\mathbf{a} \times \mathbf{b}) \neq (\mathbf{M}\mathbf{a}) \times (\mathbf{M}\mathbf{b})$

Use inverse transpose of the matrix for normals. See text book.

3D Transformations

- Generally, the extension from 2D to 3D is straightforward
 - Vectors get longer by one
 - Matrices get extra column and row
 - SVD still works the same way
 - Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

 $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$ $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

For 2D

For 3D

Scales $\tilde{\mathbf{A}} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$ For 2D $\tilde{\mathbf{A}} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ For 3D (Axis-aligned!)

Shears

 $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & 0 \\ h_{yx} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

For 2D

For 3D

Shears

 $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Shears y into x

Rotations

- 3D Rotations fundamentally more complex than in 2D
 - 2D: amount of rotation
 - 3D: amount and axis of rotation

50

3D

Rotations

- Rotations still orthonormal
- $\circ \operatorname{Det}(\mathbf{R}) = 1 \neq -1$
- Preserve lengths and distance to origin
 3D rotations DO NOT COMMUTE!
- Right-hand rule
- Unique matrices

 2D rotations implicitly rotate about a third out of plane axis

 2D rotations implicitly rotate about a third out of plane axis

$$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{s} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{s} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{s} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{s} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\mathbf{R}_{\hat{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$ Also right handed "Zup" $\mathbf{R}_{\boldsymbol{\varphi}} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$ $\mathbf{R}_{z} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 55

Also known as "direction-cosine" matrices

$$\mathbf{R}_{\hat{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \qquad \mathbf{R}_{\hat{y}} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{\hat{z}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Arbitrary Rotations

• Can be built from axis-aligned matrices: $\mathbf{R} = \mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$

Result due to Euler... hence called Euler Angles
Easy to store in vector **R** = rot(x, y, z)
But NOT a vector.

Arbitrary Rotations

Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
 - Reverse of each other

Exponential Maps

- Direct representation of arbitrary rotation
- AKA: axis-angle, angular displacement vector
 Rotate θ degrees about some axis
 Encode θ by length of vector
 θ = |**r**|

• Due to Hamilton (1843)

- Interesting history
- Involves "hermaphroditic monsters"

Uber-Complex Numbers

q =
$$(z_1, z_2, z_3, s) = (\mathbf{z}, s)$$

q = $iz_1 + jz_2 + kz_3 + s$

$$i^{2} = j^{2} = k^{2} = -1$$

$$i^{2} = k^{2} = -1$$

$$i^{2} = k^{2} = -1$$

$$j^{2} = k^{2} = -1$$

$$j^{2} = k^{2} = -i$$

$$j^{2} = k^{2} = -i$$

$$k^{2} = i$$

$$k^{2} = -i$$

$$k^{2} = -i$$

$$k^{2} = -i$$

- Multiplication natural consequence of defn.
 q · p = (z_qs_p + z_ps_q + z_p × z_q , s_ps_q z_p · z_q)
 Conjugate
 q^{*} = (-z, s)
- Magnitude

 $||\mathbf{q}||^2 = \mathbf{z} \cdot \mathbf{z} + s^2 = \mathbf{q} \cdot \mathbf{q}^*$

• Vectors as quaternions $v = (\mathbf{v}, 0)$ • Rotations as quaternions $r = (\hat{\mathbf{r}} \sin \frac{\theta}{2}, \cos \frac{\theta}{2})$

• Rotating a vector

$$x' = r \cdot x \cdot r^*$$

• Composing rotations $r = r_1 \cdot r_2$

64

- No tumbling
- No gimbal-lock
- Orientations are "double unique"
- Surface of a 3-sphere in 4D ||r|| = 1
- Nice for interpolation

Interpolation

Rotation Matrices

- Eigen system
 - One real eigenvalue
 - Real axis is axis of rotation
 - Imaginary values are 2D rotation as complex number

Rotation Matrices

• Consider:

$$\mathbf{RI} = \begin{bmatrix} r_{xx} & r_{xy} & r_{xz} \\ r_{yx} & r_{yy} & r_{yz} \\ r_{zx} & r_{zy} & r_{zz} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Columns are coordinate axes after transformation (true for general matrices)
- Rows are original axes in original system (not true for general matrices)