CS-I84: Computer Graphics

Lecture \#4: 2D Transformations

Prof. James O'Brien
University of California, Berkeley

Today

- 2D Transformations

- "Primitive" Operations
- Scale, Rotate, Shear, Flip, Translate
- Homogenous Coordinates
- SVD
- Start thinking about rotations...

Introduction

- Transformation:

An operation that changes one configuration into another

- For images, shapes, etc.

A geometric transformation maps positions that define the object to other positions

Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Uniform Scale

Nonuniform Scale

Mapping Function

$$
f(x)=x \text { in old image }
$$

$$
c(x)=[195,120,58] \quad c^{\prime} x=c(f(x))
$$

Linear -vs- Nonlinear

Linear (shear)

Geometric -vs- Color Space

Color Space Transform (edge finding)

Linear Geometric
(flip)

Instancing

M.C. Escher, from Ghostscript 8.0 Distribution

Instancing

- Reuse geometric descriptions
- Saves memory

Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation

Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

Linear is Linear

- Composing two linear function is still linear - Transform polygon by transforming vertices

$$
\begin{gathered}
f(x)=a+b x \quad g(f)=c+d f \\
g(x)=c+d f(x)=c+a d+b d x \\
g(x)=a^{\prime}+b^{\prime} x
\end{gathered}
$$

Points in Space

- Represent point in space by vector in R^{n}
- Relative to some origin!
- Relative to some coordinate axes!
- Later we'll add something extra...

Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!

Rotate

Translate

Shear -- not really "basic"

Linear Functions in 2D

$$
\begin{gathered}
x^{\prime}=f(x, y)=c_{1}+c_{2} x+c_{3} y \\
y^{\prime}=f(x, y)=d_{1}+d_{2} x+d_{3} y \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]+\left[\begin{array}{l}
M_{x x} M_{x y} \\
M_{y x} \\
M_{y y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\mathbf{x}^{\prime}=\mathbf{t}+\mathbf{M} \cdot \mathbf{x}
\end{gathered}
$$

Rotations

$$
\mathbf{p}^{\prime}=\left[\begin{array}{cc}
\operatorname{Cos}(\theta) & -\operatorname{Sin}(\theta) \\
\operatorname{Sin}(\theta) & \operatorname{Cos}(\theta)
\end{array}\right] \mathbf{p}
$$

Rotate

Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don't be different...
- Note:
- rotate by zero degrees give identity
- rotations are modulo 360 (or 2π)

Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
- $\operatorname{Det}(\mathbf{R})=1 \neq-1$
- In 2D rotations commute...
- But in 3D they won't!

Scales

Scale

Scales

- Diagonal matrices
- Diagonal parts are scale in X and scale in Y directions
- Negative values flip
- Two negatives make a positive (I80 deg. rotation)
- Really, axis-aligned scales

Not axis-aligned...

Shears

$$
\mathbf{p}^{\prime}=\left[\begin{array}{cc}
1 & H_{y x} \\
H_{x y} & 1
\end{array}\right] \mathbf{p}
$$

Shears

- Shears are not really primitive transforms
- Related to non-axis-aligned scales
- More shortly.....

Translation

- This is the not-so-useful way:

$$
\mathbf{p}^{\prime}=\mathbf{p}+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

Translate

Note that its not like the others.

Arbitrary Matrices

- For everything but translations we have:

$$
\mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}
$$

- Soon, translations will be assimilated as well
-What does an arbitrary matrix mean?

Singular Value Decomposition

- For any matrix, A, we can write SVD:

$$
\mathbf{A}=\mathbf{Q S R}^{\top}
$$

where \mathbf{Q} and \mathbf{R} are orthonormal and \mathbf{S} is diagonal

- Can also write Polar Decomposition
where \mathbf{Q} is still orthonormal

Decomposing Matrices

- We can force \mathbf{Q} and \mathbf{R} to have Det=1 so they are rotations
- Any matrix is now:
- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A} \mathbf{p}
$$

"Apply \mathbf{A} to \mathbf{p} and then apply \mathbf{B} to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathfrak{W}+\mathbf{B} \mathbf{t}=\mathbf{C p}+\mathbf{u}
$$

Composition

Transformations built up from others

SVD builds from scale and rotations

Also build other ways
i.e. 45 deg rotation built from shears

Homogeneous Coordiantes

- Move to one higher dimensional space
- Append a 1 at the end of the vectors

$$
\mathbf{p}=\left[\begin{array}{c}
p_{x} \\
p_{y}
\end{array}\right] \quad \tilde{\mathbf{p}}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

- For directions the extra coordinate is a zero

Homogeneous Translation

$$
\begin{gathered}
\widetilde{\mathbf{p}}^{\prime}=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right] \\
\widetilde{\mathbf{p}}^{\prime}=\widetilde{\mathbf{A}} \widetilde{\mathbf{p}}
\end{gathered}
$$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

$$
\widetilde{\mathbf{A}}=\left[\begin{array}{lll}
\mathbf{A} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

- Rotations and scales always about the origin
- How to rotate/scale about another point?

-vs-

Rotate About Arb. Point

- Step I:Translate point to origin

Translate (-C)

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired

Translate (-C)

Rotate (θ)

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was Transtate(-)

Rotate (θ)

Translate (C)
$\left.\widetilde{\mathbf{p}}^{\prime}=-\mathbf{T}\right) \mathbf{R T} \widetilde{\mathbf{p}}=\mathbf{A} \tilde{\mathbf{p}}$
Don't negate the $1 . .$.

Scale About Arb.Axis

- Diagonal matrices scale about coordinate axes only:

Not axis-aligned

Scale About Arb.Axis

- Step I:Translate axis to origin

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4\&5: Undo 2 and I (reverse order)

Order Matters!

- The order that matrices appear in matters

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B A}
$$

- Some special cases work, but they are special
- But matrices are associative

$$
(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})
$$

- Think about efficiency when you have many points to transform...

Matrix Inverses

- In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:
- Translation: negate t_{x} and t_{y}
- Rotation: transpose
- Scale: invert diagonal (axis-aligned scales)
- Others:
- Invert matrix
- Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the " w " coordinate
- What should we have for $\mathbf{a}-\mathbf{b}$?
- $w=0$
- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense

Somethings Require Care

For example normals do not transform normally

$$
\mathbf{M}(\mathbf{a} \times \mathbf{b}) \neq(\mathbf{M a}) \times(\mathbf{M b})
$$

Use inverse transpose of the matrix for normals.
See text book.

3D Transformations

- Generally, the extension from 2D to 3D is straightforward
- Vectors get longer by one
- Matrices get extra column and row
- SVD still works the same way
- Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

$$
\begin{aligned}
\tilde{\mathbf{A}} & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \\
\tilde{\mathbf{A}} & =\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { For 2D }
\end{aligned}
$$

Scales

$$
\begin{gathered}
\tilde{\mathbf{A}}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \\
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

For 2D

For 3D
(Axis-aligned!)

Shears

$$
\begin{array}{r}
\tilde{\mathbf{A}}=\left[\begin{array}{ccc}
1 & h_{x y} & 0 \\
h_{y x} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
1 & h_{x y} & h_{x z} & 0 \\
h_{y x} & 1 & h_{y z} & 0 \\
h_{z x} & h_{z y} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

For 2D

For 3D
(Axis-aligned!)

Shears

$$
\left[\begin{array}{cccc} 1 & h_{x y} & h_{x z} & 0 \\ h_{y x} & 1 & h_{y z} & 0 \\ h_{z y} & h_{z y} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]
$$

Shears y into x

Rotations

- 3D Rotations fundamentally more complex than in 2D
- 2D: amount of rotation
- 3D: amount and axis of rotation

$-V S$

3D

Rotations

- Rotations still orthonormal
- $\operatorname{Det}(\mathbf{R})=1 \neq-1$
- Preserve lengths and distance to origin
- 3D rotations DO NOT COMMUTE!
- Right-hand rule
- Unique matrices

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\mathbf{R}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: looks same as $\tilde{\mathbf{R}}$

Axis-aligned 3D Rotations

$\mathbf{R}_{x}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right]$
$\mathbf{R}_{\mathrm{y}}=\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right]$
$\mathbf{R}_{2}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$

Axis-aligned 3D Rotations

$$
\begin{aligned}
& \mathbf{R}_{i}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad \text { Also right handed "Zup" } \\
& \mathbf{R}_{i}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{2}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Axis-aligned 3D Rotations

- Also known as "direction-cosine" matrices

$$
\begin{gathered}
\mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
\mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Arbitrary Rotations

- Can be built from axis-aligned matrices:

$$
\mathbf{R}=\mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}
$$

- Result due to Euler... hence called Euler Angles
- Easy to store in vector $\mathbf{R}=\operatorname{rot}(x, y, z)$
- But NOT a vector.

Arbitrary Rotations

$\mathbf{R}=\mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$

Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
- Reverse of each other

Exponential Maps

- Direct representation of arbitrary rotation - AKA: axis-angle, angular displacement vector
- Rotate θ degrees about some axis
- Encode θ by length of vector

$$
\theta=|\mathbf{r}|
$$

Quaternions

- Due to Hamilton (I843)
- Interesting history
- Involves "hermaphroditic monsters"

Quaternions

- Uber-Complex Numbers

$$
\begin{gathered}
q=\left(z_{1}, z_{2}, z_{3}, s\right)=(\mathbf{z}, s) \\
q=i z_{1}+j z_{2}+k z_{3}+s \\
i^{2}=j^{2}=k^{2}=-1 \\
\begin{array}{ll}
i j=k & j i=-k \\
j k=i & k j=-i \\
k i=j & i k=-j
\end{array}
\end{gathered}
$$

Quaternions

- Multiplication natural consequence of defn.

$$
\mathrm{q} \cdot \mathrm{p}=\left(\mathbf{z}_{q} s_{p}+\mathbf{z}_{p} s_{q}+\mathbf{z}_{p} \times \mathbf{z}_{q}, s_{p} s_{q}-\mathbf{z}_{p} \cdot \mathbf{z}_{q}\right)
$$

- Conjugate

$$
\mathrm{q}^{*}=(-\mathbf{z}, s)
$$

- Magnitude

$$
\|q\|^{2}=\mathbf{Z} \cdot \mathbf{Z}+s^{2}=q \cdot q^{*}
$$

Quaternions

- Vectors as quaternions

$$
v=(\mathbf{v}, 0)
$$

- Rotations as quaternions

$$
=\left(\hat{\mathbf{r}} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right)
$$

- Rotating a vector

$$
x^{\prime}=r \cdot x \cdot r^{*}
$$

- Composing rotations

$$
r=r_{1} \cdot r_{2}
$$

Quaternions

- No tumbling
- No gimbal-lock
- Orientations are"double unique"
- Surface of a 3-sphere in 4D $\|r\|=1$
- Nice for interpolation

Interpolation

Rotation Matrices

- Eigen system
- One real eigenvalue
- Real axis is axis of rotation
- Imaginary values are 2D rotation as complex number

Rotation Matrices

- Consider:

$$
\mathbf{R I}=\left[\begin{array}{lll}
r_{x x} & r_{x y} & r_{x z} \\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Columns are coordinate axes after transformation (true for general matrices)
- Rows are original axes in original system (not true for general matrices)

