
CS-184: Computer Graphics

Lecture #4: 2D Transformations

Prof. James O’Brien
University of California, Berkeley

V2008-F-04-1.0

1

2

Today

2D Transformations
“Primitive” Operations

Scale, Rotate, Shear, Flip, Translate

Homogenous Coordinates

SVD

Start thinking about rotations...

2

3

Introduction

Transformation:
An operation that changes one configuration into another

For images, shapes, etc.
A geometric transformation maps positions that define the object to
other positions

Linear transformation means the transformation is defined by a
linear function... which is what matrices are good for.

3

4

Some Examples

Images from Conan The Destroyer, 1984

Original

Uniform Scale

Rotation

Nonuniform Scale

Shear

4

5

Mapping Function

c(x) = [195,120,58]

f (x) = x in old image

c0x= c(f (x))

5

6

Linear -vs- Nonlinear

Linear (shear)

Nonlinear (swirl)

6

7

Geometric -vs- Color Space

Linear Geometric
(flip)

Color Space Transform
(edge finding)

7

8

Instancing

RHW

M.C. Escher, from Ghostscript 8.0 Distribution

8

9

Instancing

RHW

Reuse geometric descriptions

Saves memory

9

10

Linear is Linear

Polygons defined by points

Edges defined by interpolation between two
points

Interior defined by interpolation between all
points

Linear interpolation

10

11

Linear is Linear

Composing two linear function is still linear

Transform polygon by transforming vertices

Scale

11

12

Linear is Linear

Composing two linear function is still linear

Transform polygon by transforming vertices

f (x) = a+bx g(f) = c+d f

g(x) = c+d f (x) = c+ad+bdx

g(x) = a0 +b0x

12

13

Points in Space

Represent point in space by vector in
Relative to some origin!

Relative to some coordinate axes!

Later we’ll add something extra...

Rn

Origin, 0

2

4

p= [4,2]T

13

14

Basic Transformations

Basic transforms are: rotate, scale, and
translate

Shear is a composite transformation!

Rotate

Translate

Scale

Shear -- not really “basic”

Unif
orm

/is
otr

op
ic

Non
-un

ifo
rm

/an
iso

tro
pic

14

15

Linear Functions in 2D

x0 = f (x,y) = c1+ c2x+ c3y
y0 = f (x,y) = d1+d2x+d3y

x0

y0

�
=

tx
ty

�
+

Mxx Mxy
Myx Myy

�
·

x
y

�

x0 = t+M ·x

15

16

Rotations

Rotate

pp ⎥
⎦

⎤
⎢
⎣

⎡ −
=

)Cos()(
)()Cos(

'
θθ

θθ

Sin
Sin

x

.707 -.707

.707 .707

y

x

45 degree rotation

16

17

Rotations

Rotations are positive counter-clockwise

Consistent w/ right-hand rule

Don’t be different...

Note:
rotate by zero degrees give identity
rotations are modulo 360 (or)2π

17

18

Rotations

Preserve lengths and distance to origin

Rotation matrices are orthonormal

In 2D rotations commute...
But in 3D they won’t!

Det(R) = 1 6=�1

18

19

Scales

0.5 0

 0 1.5

x

y

x

y

x

0.5 0

 0 0.5

y

x

y

Scale

Un
ifo
rm
/is
otr
op
ic

No
n-u
nif
orm
/an
iso
tro
pic

pp ⎥
⎦

⎤
⎢
⎣

⎡
=

y

x

s
s
0

0
'

19

20

Scales

Diagonal matrices
Diagonal parts are scale in X and scale in Y directions

Negative values flip

Two negatives make a positive (180 deg. rotation)

Really, axis-aligned scales

Not axis-aligned...

20

21

Shears

Shear

pp ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

'
xy

yx

H
H

x

 1 1

 0 1

y

x

y

21

22

Shears

Shears are not really primitive transforms

Related to non-axis-aligned scales

More shortly.....

22

23

Translation

This is the not-so-useful way:

Translate

⎥
⎦

⎤
⎢
⎣

⎡
+=

y

x

t
t

pp'

Note that its not like the others.

23

24

Arbitrary Matrices

For everything but translations we have:

Soon, translations will be assimilated as well

What does an arbitrary matrix mean?

x0 = A ·x

24

25

Singular Value Decomposition

For any matrix, , we can write SVD:

 where Q and R are orthonormal and S is diagonal

Can also write Polar Decomposition

 where Q is still orthonormal

A
TQSRA =

TQRSRA =

not the same Q

25

26

Decomposing Matrices

We can force Q and R to have Det=1 so they are
rotations

Any matrix is now:
Rotation:Rotation:Scale:Rotation

See, shear is just a mix of rotations and scales

26

27

Composition

Matrix multiplication composites matrices

Several translations composted to one

Translations still left out...

BApp ='
“Apply A to p and then apply B to that result.”

CppBAApBp ===)()('

uCpBtBAptApBp +=+=+=)('

27

28

Composition

shear

x

y

x

y

y

x

x

shear

shear

Transformations built up
from others

SVD builds from scale
and rotations

Also build other ways

i.e. 45 deg rotation built
from shears

28

29

Move to one higher dimensional space

Append a 1 at the end of the vectors

For directions the extra coordinate is a zero

Homogeneous Coordiantes

⎥
⎦

⎤
⎢
⎣

⎡
=

y

x

p
p

p
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1

~
y

x

p
p

p

29

30

Homogeneous Translation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1100
10
01

'~ y

x

y

x

p
p

t
t

p

pAp ~~'~ =

The tildes are for clarity to
distinguish homogenized from

non-homogenized vectors.

30

31

Homogeneous Others

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

100
0
0

~ AA

Now everything looks the same...
Hence the term “homogenized!”

31

32

Compositing Matrices

Rotations and scales always about the origin

How to rotate/scale about another point?

-vs-

32

33

Rotate About Arb. Point

Step 1: Translate point to origin

Translate (-C)

33

34

Rotate About Arb. Point

Step 1: Translate point to origin

Step 2: Rotate as desired
Translate (-C)

Rotate (θ)

34

35Don’t negate the 1...

Step 1: Translate point to origin

Step 2: Rotate as desired

Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C)

Rotate (θ)

Translate (C)

pApRTTp ~~)('~ =−=

35

36

Scale About Arb. Axis

Diagonal matrices scale about coordinate
axes only:

Not axis-aligned

36

37

Scale About Arb. Axis

Step 1: Translate axis to origin

37

38

Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the
coordinate axes

38

39

Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the
coordinate axes

Step 3: Scale as desired

39

40

Scale About Arb. Axis

Step 1: Translate axis to origin

Step 2: Rotate axis to align with one of the
coordinate axes

Step 3: Scale as desired

Steps 4&5: Undo 2 and 1 (reverse order)

40

41

Order Matters!

The order that matrices appear in matters

Some special cases work, but they are special

But matrices are associative

Think about efficiency when you have many
points to transform...

A ·B 6= BA

(A ·B) ·C= A · (B ·C)

41

42

Matrix Inverses

In general: undoes effect of

Special cases:
Translation: negate and

Rotation: transpose

Scale: invert diagonal (axis-aligned scales)

Others:
Invert matrix

Invert SVD matrices

A�1 A

tx ty

42

43

Point Vectors / Direction Vectors

Points in space have a 1 for the “w”
coordinate

What should we have for ?

Directions not the same as positions

Difference of positions is a direction

Position + direction is a position

Direction + direction is a direction

Position + position is nonsense

a�b
w= 0

43

44

Somethings Require Care

For example normals do not transform normally

M(a⇥b) 6= (Ma)⇥ (Mb)
Use inverse transpose of the matrix for normals.

See text book.
44

45

3D Transformations

Generally, the extension from 2D to 3D is
straightforward

Vectors get longer by one

Matrices get extra column and row

SVD still works the same way

Scale, Translation, and Shear all basically the same

Rotations get interesting

45

46

Ã=

2

664

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

3

775

Translations

For 2D

For 3D

Ã=

2

4
1 0 tx
0 1 ty
0 0 1

3

5

46

47

Ã=

2

664

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

3

775

Ã=

2

4
sx 0 0
0 sy 0
0 0 1

3

5 For 2D

For 3D

Scales

(Axis-aligned!)
47

48

Shears

For 2D

For 3D

(Axis-aligned!)

Ã=

2

4
1 hxy 0
hyx 1 0
0 0 1

3

5

Ã=

2

664

1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

3

775

48

49

Shears

Ã=

2

664

1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

3

775

Shears y into x

49

50

Rotations

3D Rotations fundamentally more complex
than in 2D

2D: amount of rotation

3D: amount and axis of rotation

-vs-

2D 3D

50

51

Rotations

Rotations still orthonormal

Preserve lengths and distance to origin

3D rotations DO NOT COMMUTE!

Right-hand rule

Unique matrices

Det(R) = 1 6=�1

DO NOT COMMUTE!

51

52

Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third
out of plane axis

52

53

Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third
out of plane axis

R=

cos(θ) �sin(θ)
sin(θ) cos(θ)

�
R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

Note: looks same as R̃

53

54

Axis-aligned 3D Rotations

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5

R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

x̂

ŷ

ẑ

“Z is in your face”

ẑ

x̂

ŷ

54

55

Axis-aligned 3D Rotations

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5

R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

x̂

ŷ

ẑ

x̂

ŷ

ẑ
Also right handed “Zup”

55

56

Axis-aligned 3D Rotations

Also known as “direction-cosine” matrices

R=

2

4
cos(θ) �sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

3

5

R=

2

4
1 0 0
0 cos(θ) �sin(θ)
0 sin(θ) cos(θ)

3

5 R=

2

4
cos(θ) 0 sin(θ)
0 1 0

�sin(θ) 0 cos(θ)

3

5

ẑ

x̂ ŷ

56

57

Arbitrary Rotations

Can be built from axis-aligned matrices:

Result due to Euler... hence called
 Euler Angles
Easy to store in vector

But NOT a vector.

R= rot(x,y,z)

R= Rẑ ·Rŷ ·Rx̂

57

58

Arbitrary Rotations

R= Rẑ ·Rŷ ·Rx̂

R

RẑRŷRx̂

58

59

Arbitrary Rotations

Allows tumbling

Euler angles are non-unique

Gimbal-lock

Moving -vs- fixed axes
Reverse of each other

59

60

Exponential Maps

Direct representation of arbitrary rotation

AKA: axis-angle, angular displacement vector

Rotate degrees about some axis

Encode by length of vectorθ

θ

θ
θ= |r|

r̂

60

61

Quaternions

Due to Hamilton (1843)
Interesting history

Involves “hermaphroditic monsters”

61

62

i2 = j2 = k2 =�1

Quaternions

Uber-Complex Numbers

q = (z1,z2,z3,s) = (z,s)
q = iz1+ jz2+ kz3+ s

i j = k ji=�k
jk = i k j =�i
ki= j ik =� j

62

63

||q||2 = z · z+ s2 = q · q
⇤

Quaternions

Multiplication natural consequence of defn.

Conjugate

Magnitude

q · p = (zqsp+ zpsq+ zp⇥ zq , spsq� zp · zq)

q
⇤ = (�z,s)

63

64

Quaternions
Vectors as quaternions

Rotations as quaternions

Rotating a vector

Composing rotations

v = (v,0)

r = (r̂sinθ
2
,cos

θ
2
)

x

0 = r · x · r

⇤

r = r1 · r2
64

65

Quaternions

No tumbling

No gimbal-lock

Orientations are “double unique”

Surface of a 3-sphere in 4D

Nice for interpolation

||r|| = 1

65

Interpolation

66

66

67

Rotation Matrices

Eigen system
One real eigenvalue

Real axis is axis of rotation

Imaginary values are 2D rotation as complex number

67

68

Rotation Matrices

Consider:

Columns are coordinate axes after
transformation (true for general matrices)

Rows are original axes in original system
(not true for general matrices)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

100
010
001

zzzyzx

yzyyyx

xzxyxx

rrr
rrr
rrr

RI

68

