

Lecture 3: Basic Elements of OpenGL and GLUT

The OpenGL API: Before getting to the topic of how graphics are generated, let us begin with
a discussion of the graphics API that we will be using this semester, OpenGL. We will also
discuss two related libraries, GLU (the OpenGL utility library) and GLUT (the OpenGL
Utility Toolkit). OpenGL is designed to be a machine-independent graphics library, but
one that can take advantage of the structure of typical hardware accelerators for computer
graphics.

The Main Program: Before discussing how to draw shapes, we will begin with the basic elements
of how to create a window. OpenGL was intentionally designed to be independent of any
specific window system. Consequently, a number of the basic window operations are not
provided. For this reason, a separate library, called GLUT or OpenGL Utility Toolkit, was
created to provide these functions. It is the GLUT toolkit which provides the necessary tools
for requesting that windows be created and providing interaction with I/O devices.

Let us begin by considering a typical main program. Throughout, we will assume that
programming is done in C++, but most our examples will compile in C as well. (Do not
worry for now if you do not understand the meanings of the various calls. Later we will
discuss the various elements in more detail.) This program creates a window that is 400
pixels wide and 300 pixels high, located in the upper left corner of the display.

Typical OpenGL/GLUT Main Program
#include <GL/glut.h> // GLUT, GLU, and OpenGL defs
int main(int argc, char** argv) // program arguments
{

glutInit(&argc, argv); // initialize glut and gl
// double buffering and RGB

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);
glutInitWindowSize(400, 300); // initial window size
glutInitWindowPosition(0, 0); // initial window position
glutCreateWindow(argv[0]); // create window

...initialize callbacks here (described below)...

myInit(); // your own initializations
glutMainLoop(); // turn control over to glut
return 0; // we never return here; this just keeps the compiler happy

}

The call to glutMainLoop turns control over to the system. After this, the only return to your
program will occur due to various callbacks. (The final “return 0” is only there to keep the
compiler from issuing a warning.) Here is an explanation of the first five function calls.

glutInit: The arguments given to the main program (argc and argv) are the command-line arguments
supplied to the program. This assumes a typical Unix environment, in which the program is
invoked from a command line. We pass these into the main initialization procedure, glutInit.
This procedure must be called before any others. It processes (and removes) command-
line arguments that may be of interest to GLUT and the window system and does general

Lecture Notes 12 CMSC 427

initialization of GLUT and OpenGL. Any remaining arguments are then left for the user’s
program to interpret, if desired.

glutInitDisplayMode: The next procedure, glutInitDisplayMode, performs initializations by inform-
ing OpenGL how to set up its various buffers. Recall that the frame buffer is a special
2-dimensional array in memory where the graphical image is stored. OpenGL maintains an
enhanced version of the frame buffer with additional information. For example, this includes
depth information for hidden surface removal. The system needs to know how we are repre-
senting colors of our general needs in order to determine the depth (number of bits) to assign
for each pixel in the frame buffer. The argument to glutInitDisplayMode is a logical-or (using
the operator “|”) of a number of possible options. A partial list of possible arguments is given
in Table 1.

Display Mode Meaning
GLUT RGB Use RGB colors
GLUT RGBA Use RGB plus α (recommended)
GLUT INDEX Use colormapped colors (not recommended)
GLUT DOUBLE Use double buffering (recommended)
GLUT SINGLE Use single buffering (not recommended)
GLUT DEPTH Use depth buffer (needed for hidden surface removal)

Table 1: Partial list of arguments to glutInitDisplayMode. (Constants defined in glut.h. Other
arguments will be discussed in later lectures.)
.

Color: First off, we need to tell the system how colors will be represented. There are three
methods, of which two are fairly commonly used: GLUT RGB or GLUT RGBA. The first
uses standard RGB colors (24-bit color, consisting of 8 bits of red, green, and blue), and
is the default. The second requests RGBA coloring. In this color system there is a fourth
component (A or α), which indicates the opaqueness of the color (1 = fully opaque, 0
= fully transparent). This is useful in creating transparent effects. We will discuss how
this is applied later this semester. It turns out that there is no advantage in trying to
save space using GLUT RGB over GLUT RGBA, since (according to the documentation),
both are treated the same.

Single or Double Buffering: The next option specifies whether single or double buffering
is to be used, GLUT SINGLE or GLUT DOUBLE, respectively. To explain the difference,
we need to understand a bit more about how the frame buffer works. In raster graphics
systems, whatever is written to the frame buffer is immediately transferred to the display.
This process is repeated frequently, say 30–60 times a second. To do this, the typical
approach is to first erase the old contents by setting all the pixels to some background
color, say black. After this, the new contents are drawn. However, even though it might
happen very fast, the process of setting the image to black and then redrawing everything
produces a noticeable flicker in the image.

Double buffering is a method to eliminate this flicker. In double buffering, the system
maintains two separate frame buffers. The front buffer is the one which is displayed,

Lecture Notes 13 CMSC 427

glutInit
glutInitDisplayMode

glutInitWindowSize/Position
glutCreateWindow

glutReshapeFunc:

gluMainLoop

if (first call) {
OpenGL initializations

}
(re)set viewport/projection
glutPostRedisplay

glutDisplayFunc:

clear buffers
redraw scene
glutSwapBuffers

other event callbacks:

update internal state
glutPostRedisplay

initialize callbacksinitialize callbacks

your internal initializations

Fig. 9: General structure of an OpenGL program using GLUT.

program must be prepared at any time for input from any number of sources, including the
mouse, or keyboard, or other graphics devises such as trackballs and joysticks.

In OpenGL this is done through the use of callbacks. The graphics program instructs the
system to invoke a particular procedure whenever an event of interest occurs, say, the mouse
button is clicked. The graphics program indicates its interest, or registers, for various events.
This involves telling the window system which event type you are interested in, and passing
it the name of a procedure you have written to handle the event.

Note: If you program in C++, note that the Glut callback functions you define must be
“standard” procedures; they cannot be class member functions.

Types of Callbacks: Callbacks are used for two purposes, user input events and system events.
User input events include things such as mouse clicks, the motion of the mouse (without
clicking) also called passive motion, keyboard hits. Note that your program is only signaled
about events that happen to your window. For example, entering text into another window’s
dialogue box will not generate a keyboard event for your program.

There are a number of different events that are generated by the system. There is one such
special event that every OpenGL program must handle, called a display event. A display event
is invoked when the system senses that the contents of the window need to be redisplayed,
either because:

• the graphics window has completed its initial creation,

• an obscuring window has moved away, thus revealing all or part of the graphics window,

• the program explicitly requests redrawing, for example, because the internal state has
changed in a way that affects the scene, by calling glutPostRedisplay.

Recall from above that the command glutCreateWindow does not actually create the window,
but merely requests that creation be started. In order to inform your program that the

Lecture Notes 15 CMSC 427

creation has completed, the system generates a display event. This is how you know that you
can now start drawing into the graphics window.

Another type of system event is a reshape event. This happens whenever the window’s size
is altered. The callback provides information on the new size of the window. Recall that
your initial call to glutInitWindowSize is only taken as a suggestion of the actual window size.
When the system determines the actual size of your window, it generates such a callback to
inform you of this size. Typically, the first two events that the system will generate for any
newly created window are a reshape event (indicating the size of the new window) followed
immediately by a display event (indicating that it is now safe to draw graphics in the window).

Often in an interactive graphics program, the user may not be providing any input at all, but
it may still be necessary to update the image. For example, in a flight simulator the plane
keeps moving forward, even without user input. To do this, the program goes to sleep and
requests that it be awakened in order to draw the next image. There are two ways to do
this, a timer event and an idle event. An idle event is generated every time the system has
nothing better to do. This is often fine, since it means that your program wastes no cycles.

Often, you want to have more precise control of timing (e.g., when trying to manage parallel
threads such as artificial intelligence and physics modeling). If so, an alternate approach is
to request a timer event. In a timer event you request that your program go to sleep for some
period of time and that it be “awakened” by an event some time later, say 1/50 of a second
later. In glutTimerFunc the first argument gives the sleep time as an integer in milliseconds
and the last argument is an integer identifier, which is passed into the callback function.
Various input and system events and their associated callback function prototypes are given
in Table 2.

Input Event Callback request User callback function prototype (return void)
Mouse button glutMouseFunc myMouse(int b, int s, int x, int y)
Mouse motion glutPassiveMotionFunc myMotion(int x, int y)
Keyboard key glutKeyboardFunc myKeyboard(unsigned char c, int x, int y)

System Event Callback request User callback function prototype (return void)
(Re)display glutDisplayFunc myDisplay()
(Re)size window glutReshapeFunc myReshape(int w, int h)
Timer event glutTimerFunc myTimer(int id)
Idle event glutIdleFunc myIdle()

Table 2: Common callbacks and the associated registration functions.

For example, the following code fragment shows how to register for the following events:
display events, reshape events, mouse clicks, keyboard strikes, and timer events. The functions
like myDraw and myReshape are supplied by the user, and will be described later.

Most of these callback registrations simply pass the name of the desired user function to be
called for the corresponding event. The one exception is glutTimeFunc whose arguments are
the number of milliseconds to wait (an unsigned int), the user’s callback function, and an
integer identifier. The identifier is useful if there are multiple timer callbacks requested (for
different times in the future), so the user can determine which one caused this particular

Lecture Notes 16 CMSC 427

Typical Callback Setup
int main(int argc, char** argv)
{

...
glutDisplayFunc(myDraw); // set up the callbacks
glutReshapeFunc(myReshape);
glutMouseFunc(myMouse);
glutKeyboardFunc(myKeyboard);
glutTimerFunc(20, myTimeOut, 0); // timer in 20/1000 seconds
...

}

event.

Callback Functions: What does a typical callback function do? This depends entirely on the
application that you are designing. Some examples of general form of callback functions is
shown below.

Examples of Callback Functions for System Events
void myDraw() { // called to display window

// ...insert your drawing code here ...
}
void myReshape(int w, int h) { // called if reshaped

windowWidth = w; // save new window size
windowHeight = h;
// ...may need to update the projection ...
glutPostRedisplay(); // request window redisplay

}
void myTimeOut(int id) { // called if timer event

// ...advance the state of animation incrementally...
glutPostRedisplay(); // request redisplay
glutTimerFunc(20, myTimeOut, 0); // schedule next timer event

}

Note that the timer callback and the reshape callback both invoke the function glutPostRedis-

play. This procedure informs OpenGL that the state of the scene has changed and should be
redrawn (by calling your drawing procedure). This might be requested in other callbacks as
well.

Note that each callback function is provided with information associated with the event. For
example, a reshape event callback passes in the new window width and height. A mouse
click callback passes in four arguments, which button was hit (b: left, middle, right), what
the buttons new state is (s: up or down), the (x, y) coordinates of the mouse when it was
clicked (in pixels). The various parameters used for b and s are described in Table 3. A
keyboard event callback passes in the character that was hit and the current coordinates of
the mouse. The timer event callback passes in the integer identifier, of the timer event which
caused the callback. Note that each call to glutTimerFunc creates only one request for a timer
event. (That is, you do not get automatic repetition of timer events.) If you want to generate

Lecture Notes 17 CMSC 427

Typical Callback Setup
int main(int argc, char** argv)
{

...
glutDisplayFunc(myDraw); // set up the callbacks
glutReshapeFunc(myReshape);
glutMouseFunc(myMouse);
glutKeyboardFunc(myKeyboard);
glutTimerFunc(20, myTimeOut, 0); // timer in 20/1000 seconds
...

}

event.

Callback Functions: What does a typical callback function do? This depends entirely on the
application that you are designing. Some examples of general form of callback functions is
shown below.

Examples of Callback Functions for System Events
void myDraw() { // called to display window

// ...insert your drawing code here ...
}
void myReshape(int w, int h) { // called if reshaped

windowWidth = w; // save new window size
windowHeight = h;
// ...may need to update the projection ...
glutPostRedisplay(); // request window redisplay

}
void myTimeOut(int id) { // called if timer event

// ...advance the state of animation incrementally...
glutPostRedisplay(); // request redisplay
glutTimerFunc(20, myTimeOut, 0); // schedule next timer event

}

Note that the timer callback and the reshape callback both invoke the function glutPostRedis-

play. This procedure informs OpenGL that the state of the scene has changed and should be
redrawn (by calling your drawing procedure). This might be requested in other callbacks as
well.

Note that each callback function is provided with information associated with the event. For
example, a reshape event callback passes in the new window width and height. A mouse
click callback passes in four arguments, which button was hit (b: left, middle, right), what
the buttons new state is (s: up or down), the (x, y) coordinates of the mouse when it was
clicked (in pixels). The various parameters used for b and s are described in Table 3. A
keyboard event callback passes in the character that was hit and the current coordinates of
the mouse. The timer event callback passes in the integer identifier, of the timer event which
caused the callback. Note that each call to glutTimerFunc creates only one request for a timer
event. (That is, you do not get automatic repetition of timer events.) If you want to generate

Lecture Notes 17 CMSC 427

Examples of Callback Functions for User Input Events
// called if mouse click

void myMouse(int b, int s, int x, int y) {
switch (b) { // b indicates the button

case GLUT_LEFT_BUTTON:
if (s == GLUT_DOWN) // button pressed

// ...
else if (s == GLUT_UP) // button released

// ...
break;

// ... // other button events
}

}
// called if keyboard key hit

void myKeyboard(unsigned char c, int x, int y) {
switch (c) { // c is the key that is hit

case ’q’: // ’q’ means quit
exit(0);
break;

// ... // other keyboard events
}

}

events on a regular basis, then insert a call to glutTimerFunc from within the callback function
to generate the next one.

GLUT Parameter Name Meaning
GLUT LEFT BUTTON left mouse button
GLUT MIDDLE BUTTON middle mouse button
GLUT RIGHT BUTTON right mouse button
GLUT DOWN mouse button pressed down
GLUT UP mouse button released

Table 3: GLUT parameter names associated with mouse events. (Constants defined in glut.h)

Lecture 4: More about OpenGL and GLUT

Basic Drawing: In the previous lecture, we showed how to create a window in GLUT, how to get
user input, but we have not discussed how to get graphics to appear in the window. Here, we
begin discussion of how to use OpenGL to draw objects.

Before being able to draw a scene, OpenGL needs to know the following information: what
are the objects to be drawn, how is the image to be projected onto the window, and how
lighting and shading are to be performed. To begin with, we will consider a very the simple
case. There are only 2-dimensional objects, no lighting or shading. Also we will consider only
relatively little user interaction.

Lecture Notes 18 CMSC 427

Examples of Callback Functions for User Input Events
// called if mouse click

void myMouse(int b, int s, int x, int y) {
switch (b) { // b indicates the button

case GLUT_LEFT_BUTTON:
if (s == GLUT_DOWN) // button pressed

// ...
else if (s == GLUT_UP) // button released

// ...
break;

// ... // other button events
}

}
// called if keyboard key hit

void myKeyboard(unsigned char c, int x, int y) {
switch (c) { // c is the key that is hit

case ’q’: // ’q’ means quit
exit(0);
break;

// ... // other keyboard events
}

}

events on a regular basis, then insert a call to glutTimerFunc from within the callback function
to generate the next one.

GLUT Parameter Name Meaning
GLUT LEFT BUTTON left mouse button
GLUT MIDDLE BUTTON middle mouse button
GLUT RIGHT BUTTON right mouse button
GLUT DOWN mouse button pressed down
GLUT UP mouse button released

Table 3: GLUT parameter names associated with mouse events. (Constants defined in glut.h)

Lecture 4: More about OpenGL and GLUT

Basic Drawing: In the previous lecture, we showed how to create a window in GLUT, how to get
user input, but we have not discussed how to get graphics to appear in the window. Here, we
begin discussion of how to use OpenGL to draw objects.

Before being able to draw a scene, OpenGL needs to know the following information: what
are the objects to be drawn, how is the image to be projected onto the window, and how
lighting and shading are to be performed. To begin with, we will consider a very the simple
case. There are only 2-dimensional objects, no lighting or shading. Also we will consider only
relatively little user interaction.

Lecture Notes 18 CMSC 427

The display callback function for our program is shown below. We first erase the contents
of the image window, then do our drawing, and finally swap buffers so that what we have
drawn becomes visible. (Recall double buffering from the previous lecture.) This function
first draws a red diamond and then (on top of this) it draws a blue rectangle. Let us assume
double buffering is being performed, and so the last thing to do is invoke glutSwapBuffers() to
make everything visible.

Let us present the code, and we will discuss the various elements of the solution in greater
detail below.

Sample Display Function
void myDisplay() { // display function

glClear(GL_COLOR_BUFFER_BIT); // clear the window

glColor3f(1.0, 0.0, 0.0); // set color to red
glBegin(GL_POLYGON); // draw a diamond

glVertex2f(0.90, 0.50);
glVertex2f(0.50, 0.90);
glVertex2f(0.10, 0.50);
glVertex2f(0.50, 0.10);

glEnd();

glColor3f(0.0, 0.0, 1.0); // set color to blue
glRectf(0.25, 0.25, 0.75, 0.75); // draw a rectangle

glutSwapBuffers(); // swap buffers
}

Clearing the Window: The command glClear() clears the window, by overwriting it with the
background color. The background color is black by default, but generally it may be set by
the call:

glClearColor(GLfloat Red, GLfloat Green, GLfloat Blue, GLfloat Alpha).

The type GLfloat is OpenGL’s redefinition of the standard float. To be correct, you should use
the approved OpenGL types (e.g. GLfloat, GLdouble, GLint) rather than the obvious counter-
parts (float, double, and int). Typically the GL types are the same as the corresponding native
types, but not always.

Colors components are given as floats in the range from 0 to 1, from dark to light. Recall that
the A (or α) value is used to control transparency. For opaque colors A is set to 1. Thus to
set the background color to black, we would use glClearColor(0.0, 0.0, 0.0, 1.0), and to set it to
blue use glClearColor(0.0, 0.0, 1.0, 1.0). (Tip: When debugging your program, it is often a good
idea to use an uncommon background color, like a random shade of pink, since black can
arise as the result of many different bugs.) Since the background color is usually independent
of drawing, the function glClearColor() is typically set in one of your initialization procedures,
rather than in the drawing callback function.

Clearing the window involves resetting information within the drawing buffer. As we men-
tioned before, the drawing buffer may store different types of information. This includes color

Lecture Notes 20 CMSC 427

... (and 4-argument forms for all the other types) ...

void glColor3dv(const GLdouble *v)
... (and other 3- and 4-argument forms for all the other types) ...

Drawing commands: OpenGL supports drawing of a number of different types of objects. The
simplest is glRectf(), which draws a filled rectangle. All the others are complex objects con-
sisting of a (generally) unpredictable number of elements. This is handled in OpenGL by
the constructs glBegin(mode) and glEnd(). Between these two commands a list of vertices is
given, which defines the object. The sort of object to be defined is determined by the mode

argument of the glBegin() command. Some of the possible modes are illustrated in Fig. 11.
For details on the semantics of the drawing methods, see the reference manuals.

Note that in the case of GL POLYGON only convex polygons (internal angles less than 180
degrees) are supported. You must subdivide nonconvex polygons into convex pieces, and
draw each convex piece separately.

glBegin(mode);
glVertex(v0); glVertex(v1); ...

glEnd();

GL POINTS GL LINES GL LINE STRIP GL LINE LOOP GL POLYGON

v5

v3

v2v1

v0
v4

v5

v3

v2v1

v0
v4

v5

v3

v2v1

v0
v4

v5

v3

v2v1

v0
v4

v5

v3

v2
v1

v0
v4

GL TRIANGLES GL TRIANGLE STRIP GL TRIANGLE FAN GL QUADS GL QUAD STRIP

v5

v3

v2
v1

v0
v4

v4

v3

v1v0

v2
v5

v6
v6

v3

v2v1

v0
v4

v5

v7

v3

v2v1

v0

v5

v6

v4

v4

v3

v1v0

v2

v6

v5

v7

GL QUADSGL TRIANGLE STRIP GL TRIANGLE FAN

Fig. 11: Some OpenGL object definition modes. It is a good idea to draw primitives using a
consistent direction, say counterclockwise.

In the example above we only defined the x- and y-coordinates of the vertices. How does
OpenGL know whether our object is 2-dimensional or 3-dimensional? The answer is that it
does not know. OpenGL represents all vertices as 3-dimensional coordinates internally. This
may seem wasteful, but remember that OpenGL is designed primarily for 3-d graphics. If
you do not specify the z-coordinate, then it simply sets the z-coordinate to 0.0. By the way,
glRectf() always draws its rectangle on the z = 0 plane.

Between any glBegin()...glEnd() pair, there is a restricted set of OpenGL commands that may
be given. This includes glVertex() and also other command attribute commands, such as
glColor3f(). At first it may seem a bit strange that you can assign different colors to the

Lecture Notes 22 CMSC 427

different vertices of an object, but this is a very useful feature. Depending on the shading
model, it allows you to produce shapes whose color blends smoothly from one end to the
other.

There are a number of drawing attributes other than color. For example, for points it is
possible adjust their size (with glPointSize()). For lines, it is possible to adjust their width (with
glLineWidth()), and create dashed or dotted lines (with glLineStipple()). It is also possible to
pattern or stipple polygons (with glPolygonStipple()). When we discuss 3-dimensional graphics
we will discuss many more properties that are used in shading and hidden surface removal.

After drawing the diamond, we change the color to blue, and then invoke glRectf() to draw a
rectangle. This procedure takes four arguments, the (x, y) coordinates of any two opposite
corners of the rectangle, in this case (0.25, 0.25) and (0.75, 0.75). (There are also versions of
this command that takes double or int arguments, and vector arguments as well.) We could
have drawn the rectangle by drawing a GL POLYGON, but this form is easier to use.

Viewports: OpenGL does not assume that you are mapping your graphics to the entire window.
Often it is desirable to subdivide the graphics window into a set of smaller subwindows and
then draw separate pictures in each window. The subwindow into which the current graphics
are being drawn is called a viewport. The viewport is typically the entire display window, but
it may generally be any rectangular subregion.

The size of the viewport depends on the dimensions of our window. Thus, every time the
window is resized (and this includes when the window is created originally) we need to readjust
the viewport to ensure proper transformation of the graphics. For example, in the typical
case, where the graphics are drawn to the entire window, the reshape callback would contain
the following call which resizes the viewport, whenever the window is resized.

Setting the Viewport in the Reshape Callback
void myReshape(int winWidth, int winHeight) // reshape window
{

...
glViewport (0, 0, winWidth, winHeight); // reset the viewport
...

}

The other thing that might typically go in the myReshape() function would be a call to glut-

PostRedisplay(), since you will need to redraw your image after the window changes size.

The general form of the command is

glViewport(GLint x, GLint y, GLsizei width, GLsizei height),

where (x, y) are the pixel coordinates of the lower-left corner of the viewport, as defined
relative to the lower-left corner of the window, and width and height are the width and height
of the viewport in pixels.

For example, suppose you had a w×h window, which you wanted to split in half by a vertical
line to produce two different drawings. You could do the following.

Lecture Notes 23 CMSC 427

glClear(GL_COLOR_BUFFER_BIT); // clear the window
glViewport (0, 0, w/2, h); // set viewport to left half
// ...drawing commands for the left half of window

glViewport (w/2, 0, w/2, h); // set viewport to right half
// ...drawing commands for the right half of window

glutSwapBuffers(); // swap buffers

Projection Transformation: In the simple drawing procedure, we said that we were assuming
that the “idealized” drawing area was a unit square over the interval [0, 1] with the origin
in the lower left corner. The transformation that maps the idealized drawing region (in 2-
or 3-dimensions) to the window is called the projection. We did this for convenience, since
otherwise we would need to explicitly scale all of our coordinates whenever the user changes
the size of the graphics window.

However, we need to inform OpenGL of where our “idealized” drawing area is so that OpenGL
can map it to our viewport. This mapping is performed by a transformation matrix called
the projection matrix, which OpenGL maintains internally. (In future lectures, we will discuss
OpenGL’s transformation mechanism in greater detail. In the mean time some of this may
seem a bit arcane.)

Since matrices are often cumbersome to work with, OpenGL provides a number of relatively
simple and natural ways of defining this matrix. For our 2-dimensional example, we will do
this by simply informing OpenGL of the rectangular region of two dimensional space that
makes up our idealized drawing region. This is handled by the command

gluOrtho2D(left, right, bottom, top).

First note that the prefix is “glu” and not “gl”, because this procedure is provided by the
GLU library. Also, note that the “2D” designator in this case stands for “2-dimensional.” (In
particular, it does not indicate the argument types, as with, say, glColor3f()).

All arguments are of type GLdouble. The arguments specify the x-coordinates (left and right)
and the y-coordinates (bottom and top) of the rectangle into which we will be drawing. Any
drawing that we do outside of this region will automatically be clipped away by OpenGL.
The code to set the projection is given below.

Setting a Two-Dimensional Projection
glMatrixMode(GL_PROJECTION); // set projection matrix
glLoadIdentity(); // initialize to identity
gluOrtho2D(0.0, 1.0, 0.0, 1.0); // map unit square to viewport

The first command tells OpenGL that we are modifying the projection transformation.
(OpenGL maintains three different types of transformations, as we will see later.) Most
of the commands that manipulate these matrices do so by multiplying some matrix times
the current matrix. Thus, we initialize the current matrix to the identity, which is done by
glLoadIdentity(). This code usually appears in some initialization procedure or possibly in the
reshape callback.

Lecture Notes 24 CMSC 427

glClear(GL_COLOR_BUFFER_BIT); // clear the window
glViewport (0, 0, w/2, h); // set viewport to left half
// ...drawing commands for the left half of window

glViewport (w/2, 0, w/2, h); // set viewport to right half
// ...drawing commands for the right half of window

glutSwapBuffers(); // swap buffers

Projection Transformation: In the simple drawing procedure, we said that we were assuming
that the “idealized” drawing area was a unit square over the interval [0, 1] with the origin
in the lower left corner. The transformation that maps the idealized drawing region (in 2-
or 3-dimensions) to the window is called the projection. We did this for convenience, since
otherwise we would need to explicitly scale all of our coordinates whenever the user changes
the size of the graphics window.

However, we need to inform OpenGL of where our “idealized” drawing area is so that OpenGL
can map it to our viewport. This mapping is performed by a transformation matrix called
the projection matrix, which OpenGL maintains internally. (In future lectures, we will discuss
OpenGL’s transformation mechanism in greater detail. In the mean time some of this may
seem a bit arcane.)

Since matrices are often cumbersome to work with, OpenGL provides a number of relatively
simple and natural ways of defining this matrix. For our 2-dimensional example, we will do
this by simply informing OpenGL of the rectangular region of two dimensional space that
makes up our idealized drawing region. This is handled by the command

gluOrtho2D(left, right, bottom, top).

First note that the prefix is “glu” and not “gl”, because this procedure is provided by the
GLU library. Also, note that the “2D” designator in this case stands for “2-dimensional.” (In
particular, it does not indicate the argument types, as with, say, glColor3f()).

All arguments are of type GLdouble. The arguments specify the x-coordinates (left and right)
and the y-coordinates (bottom and top) of the rectangle into which we will be drawing. Any
drawing that we do outside of this region will automatically be clipped away by OpenGL.
The code to set the projection is given below.

Setting a Two-Dimensional Projection
glMatrixMode(GL_PROJECTION); // set projection matrix
glLoadIdentity(); // initialize to identity
gluOrtho2D(0.0, 1.0, 0.0, 1.0); // map unit square to viewport

The first command tells OpenGL that we are modifying the projection transformation.
(OpenGL maintains three different types of transformations, as we will see later.) Most
of the commands that manipulate these matrices do so by multiplying some matrix times
the current matrix. Thus, we initialize the current matrix to the identity, which is done by
glLoadIdentity(). This code usually appears in some initialization procedure or possibly in the
reshape callback.

Lecture Notes 24 CMSC 427

restoring it later (by popping the stack). We will discuss the entire process of implementing
affine and projection transformations later in the semester. For now, we’ll give just basic
information on OpenGL’s approach to handling matrices and transformations.

OpenGL has a number of commands for handling matrices. In order to know which matrix
(Modelview, Projection, or Texture) to which an operation applies, you can set the current
matrix mode. This is done with the following command

glMatrixMode(mode);

where mode is either GL MODELVIEW, GL PROJECTION, or GL TEXTURE. The default mode is
GL MODELVIEW.

GL MODELVIEW is by far the most common mode, the convention in OpenGL programs is
to assume that you are always in this mode. If you want to modify the mode for some
reason, you first change the mode to the desired mode (GL PROJECTION or GL TEXTURE),
perform whatever operations you want, and then immediately change the mode back to
GL MODELVIEW.

Once the matrix mode is set, you can perform various operations to the stack. OpenGL has an
unintuitive way of handling the stack. Note that most operations below (except glPushMatrix())
alter the contents of the matrix at the top of the stack.

glLoadIdentity(): Sets the current matrix to the identity matrix.

glLoadMatrix*(M): Loads (copies) a given matrix over the current matrix. (The ‘*’ can be
either ‘f’ or ‘d’ depending on whether the elements of M are GLfloat or GLdouble, respec-
tively.)

glMultMatrix*(M): Post-multiplies the current matrix by a given matrix and replaces the
current matrix with this result. Thus, if C is the current matrix on top of the stack, it
will be replaced with the matrix product C ·M . (As above, the ‘*’ can be either ‘f’ or
‘d’ depending on M .)

glPushMatrix(): Pushes a copy of the current matrix on top the stack. (Thus the stack now
has two copies of the top matrix.)

glPopMatrix(): Pops the current matrix off the stack.

An example is shown in Fig. 22. We will discuss how matrices like M are presented to
OpenGL later in the semester. There are a number of other matrix operations, which we will
also discuss later.

Warning: OpenGL assumes that all matrices are 4 × 4 homogeneous matrices, stored
in column-major order. (In contrast, most modern programming languages linearize 2-
dimensional arrays by storing them in row-major order.) That is, a matrix is presented
as an array of 16 values, where the first four values give column 0 (for x), then column 1
(for y), then column 2 (for z), and finally column 3 (for the homogeneous coordinate, usually
called w). For example, given a matrix M and vector v, OpenGL assumes the following

Lecture Notes 39 CMSC 427

A

B

C

initial
stack

A

B

I

load
identity

A

B

M

load
matrix(M)

A

B

M

mult
matrix(T)

A

B

M

push
matrix

MT

A

B

M

pop
matrix

M

Fig. 22: Matrix stack operations.

representation:

M · v =

⎛

⎜⎜⎝

m[0] m[4] m[8] m[12]
m[1] m[5] m[9] m[13]
m[2] m[6] m[10] m[14]
m[3] m[7] m[11] m[15]

⎞

⎟⎟⎠

⎛

⎜⎜⎝

v[0]
v[1]
v[2]
v[3]

⎞

⎟⎟⎠

Automatic Evaluation and the Transformation Pipeline: Now that we have described the
matrix stack, the next question is how do we apply the matrix to some point that we want to
transform? Understanding the answer is critical to understanding how OpenGL (and actually
display processors) work. The answer is that it happens automatically. In particular, every
vertex (and hence virtually every geometric object that is drawn) is passed through a series
of matrices, as shown in Fig. 23. This may seem rather inflexible, but it is because of the
simple uniformity of sending every vertex through this transformation sequence that makes
graphics cards run so fast. As mentioned above, these transformations behave much like
drawing attributes—you set them, do some drawing, alter them, do more drawing, etc.

Modelview
Matrix

Projection
Matrix

Viewport
Transform

Perspective
normalization
and clipping

Standard
coordinates

Camera (or eye)
coordinates

Normalized
device

coordinates

Window
coordinates

Points
(glVertex)

Fig. 23: Transformation pipeline.

A second important thing to understand is that OpenGL’s transformations do not alter the
state of the objects you are drawing. They simply modify things before they get drawn. For
example, suppose that you draw a unit square (U = [0, 1]×[0, 1]) and pass it through a matrix
that scales it by a factor of 5. The square U itself has not changed; it is still a unit square.
If you wanted to change the actual representation of U to be a 5 × 5 square, then you need
to perform your own modification of U ’s representation.

You might ask, “what if I do not want the current transformation to be applied to some
object?” The answer is, “tough luck.” There are no exceptions to this rule (other than
commands that act directly on the viewport). If you do not want a transformation to be

Lecture Notes 40 CMSC 427

current Modelview matrix, then we want to compute the product

M(T (R(v⃗))) = M · T ·R · v⃗.

Since M is on the top of the stack, we need to first apply translation (T) to M , and then apply
rotation (R) to the result, and then do the drawing (v⃗). Note that the order of application
is the exact reverse from the conceptual order. This may seems confusing (and it is), so
remember the following rule.

Drawing/Transformation Order in OpenGL’s

First, conceptualize your intent by drawing about the origin and then ap-
plying the appropriate transformations to map your object to its desired
location. Then implement this by applying transformations in reverse or-

der, and do your drawing. It is always a good idea to enclose everything in
a push-matrix and pop-matrix pair.

Although this may seem backwards, it is the way in which almost all object transformations
are performed in OpenGL:

(1) Push the matrix stack,

(2) Apply (i.e., multiply) all the desired transformation matrices with the current matrix,
but in the reverse order from which you would like them to be applied to your object,

(3) Draw your object (the transformations will be applied automatically), and

(4) Pop the matrix stack.

The final and correct fragment of code for the rotation is shown in the code block below.

Drawing an Rotated Rectangle (Correct)
glPushMatrix(); // save the current matrix (M)
glTranslatef(x, y, 0); // apply translation (T)
glRotatef(20, 0, 0, 1); // apply rotation (R)
glRectf(-2, -2, 2, 2); // draw rectangle at the origin

glPopMatrix(); // restore the old matrix (M)

Projection Revisited: Last time we discussed the use of gluOrtho2D() for defining simple 2-dimen-
sional projection. This call does not really do any projection. Rather, it computes the
desired projection transformation and multiplies it times whatever is on top of the current
matrix stack. So, to use this we need to do a few things. First, set the matrix mode to
GL PROJECTION, load an identity matrix (just for safety), and the call gluOrtho2D(). Because
of the convention that the Modelview mode is the default, we will set the mode back when
we are done.

If you only set the projection once, then initializing the matrix to the identity is typically
redundant (since this is the default value), but it is a good idea to make a habit of loading
the identity for safety. If the projection does not change throughout the execution of our
program, and so we include this code in our initializations. It might be put in the reshape
callback if reshaping the window alters the projection.

Lecture Notes 43 CMSC 427

current Modelview matrix, then we want to compute the product

M(T (R(v⃗))) = M · T ·R · v⃗.

Since M is on the top of the stack, we need to first apply translation (T) to M , and then apply
rotation (R) to the result, and then do the drawing (v⃗). Note that the order of application
is the exact reverse from the conceptual order. This may seems confusing (and it is), so
remember the following rule.

Drawing/Transformation Order in OpenGL’s

First, conceptualize your intent by drawing about the origin and then ap-
plying the appropriate transformations to map your object to its desired
location. Then implement this by applying transformations in reverse or-

der, and do your drawing. It is always a good idea to enclose everything in
a push-matrix and pop-matrix pair.

Although this may seem backwards, it is the way in which almost all object transformations
are performed in OpenGL:

(1) Push the matrix stack,

(2) Apply (i.e., multiply) all the desired transformation matrices with the current matrix,
but in the reverse order from which you would like them to be applied to your object,

(3) Draw your object (the transformations will be applied automatically), and

(4) Pop the matrix stack.

The final and correct fragment of code for the rotation is shown in the code block below.

Drawing an Rotated Rectangle (Correct)
glPushMatrix(); // save the current matrix (M)
glTranslatef(x, y, 0); // apply translation (T)
glRotatef(20, 0, 0, 1); // apply rotation (R)
glRectf(-2, -2, 2, 2); // draw rectangle at the origin

glPopMatrix(); // restore the old matrix (M)

Projection Revisited: Last time we discussed the use of gluOrtho2D() for defining simple 2-dimen-
sional projection. This call does not really do any projection. Rather, it computes the
desired projection transformation and multiplies it times whatever is on top of the current
matrix stack. So, to use this we need to do a few things. First, set the matrix mode to
GL PROJECTION, load an identity matrix (just for safety), and the call gluOrtho2D(). Because
of the convention that the Modelview mode is the default, we will set the mode back when
we are done.

If you only set the projection once, then initializing the matrix to the identity is typically
redundant (since this is the default value), but it is a good idea to make a habit of loading
the identity for safety. If the projection does not change throughout the execution of our
program, and so we include this code in our initializations. It might be put in the reshape
callback if reshaping the window alters the projection.

Lecture Notes 43 CMSC 427

transformation at the top of the current transformation stack. (Recall OpenGL’s transforma-
tion structure from the previous lecture on OpenGL transformations.) This should be done
in Modelview mode.

Conceptually, this change of coordinates is performed last, after all other Modelview trans-
formations are performed, and immediately before the projection. By the “reverse rule” of
OpenGL transformations, this implies that this change of coordinates transformation should
be the first transformation on the Modelview transformation matrix stack. Thus, it is al-
most always preceded by loading the identity matrix. Here is the typical calling sequence.
This should be called when the camera position is set initially, and whenever the camera is
(conceptually) repositioned in space.

Typical Structure of Redisplay Callback
void myDisplay() {

// clear the buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity(); // start fresh

// set up camera frame
gluLookAt(eyeX, eyeY, eyeZ, atX, atY, atZ, upX, upY, upZ);
myWorld.draw(); // draw your scene
glutSwapBuffers(); // make it all appear

}

The arguments are all of type GLdouble. The arguments consist of the coordinates of two points
and vector, in the standard coordinate system. The point eye = (ex, ey, ez)T is the viewpoint,
that is the location of they viewer (or the camera). To indicate the direction that the camera
is pointed, a central point at which the camera is directed is given by at = (ax, ay, az)T. The
“at” point is significant only in that it defines the viewing vector, which indicates the direction
that the viewer is facing. It is defined to be at− eye (see Fig. 31).

eye

vx

vy

vz view direction

wz

wy
wx

View Frame World Frame

at

up

Fig. 31: The world frame, parameters to gluLookAt, and the camera frame.

These points define the position and direction of the camera, but the camera is still free
to rotate about the viewing direction vector. To fix last degree of freedom, the vector
−→up = (ux, uy, uz)T provides the direction that is “up” relative to the camera. Under typi-
cal circumstances, this would just be a vector pointing straight up (which might be (0, 0, 1)T

in your world coordinate system). In some cases (e.g. in a flight simulator, when the plane
banks to one side) you might want to have this vector pointing in some other direction (e.g.,
up relative to the pilot’s orientation). This vector need not be perpendicular to the viewing
vector. However, it cannot be parallel to the viewing direction vector.

Lecture Notes 51 CMSC 427

stack. So this typically occurs in the following context of calls, usually as part of your
initializations.

void myDisplay() {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
gluLookAt(...); // set up camera frame
glMatrixMode(GL_PROJECTION); // set up projection
glLoadIdentity();
gluPerspective(fovy, aspect, near, far); // or glFrustum(...)
glMatrixMode(GL_MODELVIEW);
myWorld.draw(); // draw everything
glutSwapBuffers();

}

The function gluPerspective does not have to be called again unless the camera’s projection
properties are changed (e.g., increasing or decreasing zoom). For example, it does not need
to be called if the camera is simply moved to a new location.

Perspective with Depth: The question that we want to consider next is what perspective trans-
formation matrix does OpenGL generate for this call? There is a significant shortcoming
with the simple perspective transformation that we described above. Recall that the point
(x, y, z, 1)T is mapped to the point (−x/(z/d),−y/(z/d),−d, 1)T. The last two components of
this vector convey no information, for they are the same, no matter what point is projected.

Is there anything more that we could ask for? In turns out that there is. This is depth

information. We would like to know how far a projected point is from the viewer. After the
projection, all depth information is lost, because all points are flattened onto the projection
plane. Such depth information would be very helpful in performing hidden-surface removal.
Let’s consider how we might include this information.

We will design a projective transformation in which the (x, y)-coordinates of the transformed
points are the desired coordinates of the projected point, but the z-coordinate of the trans-
formed point encodes the depth information. This is called perspective with depth. The (x, y)
coordinates are then used for drawing the projected object and the z-coordinate is used in
hidden surface removal. It turns out that this depth information will be subject to a nonlinear
distortion. However, the important thing will be that depth-order will be preserved, in the
sense that points that are farther from the eye (in terms of their z-coordinates) will have
greater depth values than points that are nearer.

As a start, let’s consider the process in a simple form. As usual we assume that the eye is
at the origin and looking down the −z-axis. Let us also assume that the projection plane is
located at z = −1. Consider the following matrix:

M =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 α β
0 0 −1 0

⎞

⎟⎟⎠ .

Lecture Notes 60 CMSC 427

GL LIGHT0 through GL LIGHT7. Each light source may either be enabled (turned on) or dis-
abled (turned off). By default they are all disabled. Again, this is done using glEnable()

(and glDisable()). The properties of each light source is set by the command glLight*(). This
command takes three arguments, the name of the light, the property of the light to set, and
the value of this property.

Let us consider a light source 0, whose position is (2, 4, 5, 1)T in homogeneous coordinates,
and which has a red ambient intensity, given as the RGB triple (0.9, 0, 0), and white diffuse
and specular intensities, given as the RGB triple (1.2, 1.2, 1.2). (Normally all the intensities
will be of the same color, albeit of different strengths. We have made them different just to
emphasize that it is possible.) There are no real units of measurement involved here. Usually
the values are adjusted manually by a designer until the image “looks good.”

Light intensities are actually expressed in OpenGL as RGBA, rather than just RGB triples.
The ‘A’ component can be used for various special effects, but for now, let us just assume
the default situation by setting ‘A’ to 1. Here is an example of how to set up such a light in
OpenGL. The procedure glLight*() can also be used for setting other light properties, such as
attenuation.

Setting up a simple lighting situation
glClearColor(0.0, 1.0, 0.0, 1.0); // intentionally background
glEnable(GL_NORMALIZE); // normalize normal vectors
glShadeModel(GL_SMOOTH); // do smooth shading
glEnable(GL_LIGHTING); // enable lighting

// ambient light (red)
GLfloat ambientIntensity[4] = {0.9, 0.0, 0.0, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientIntensity);

// set up light 0 properties
GLfloat lt0Intensity[4] = {1.5, 1.5, 1.5, 1.0}; // white
glLightfv(GL_LIGHT0, GL_DIFFUSE, lt0Intensity);
glLightfv(GL_LIGHT0, GL_SPECULAR, lt0Intensity);

GLfloat lt0Position[4] = {2.0, 4.0, 5.0, 1.0}; // location
glLightfv(GL_LIGHT0, GL_POSITION, lt0Position);

// attenuation params (a,b,c)
glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.0);
glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.0);
glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.1);
glEnable(GL_LIGHT0);

Defining Surface Materials (Colors): When lighting is in effect, rather than specifying colors
using glColor() you do so by setting the material properties of the objects to be rendered.
OpenGL computes the color based on the lights and these properties. Surface properties are
assigned to vertices (and not assigned to faces as you might think). In smooth shading, this
vertex information (for colors and normals) are interpolated across the entire face. In flat
shading the information for the first vertex determines the color of the entire face.

Every object in OpenGL is a polygon, and in general every face can be colored in two different

Lecture Notes 74 CMSC 427

ways. In most graphic scenes, polygons are used to bound the faces of solid polyhedra objects
and hence are only to be seen from one side, called the front face. This is the side from which
the vertices are given in counterclockwise order. By default OpenGL, only applies lighting
equations to the front side of each polygon and the back side is drawn in exactly the same
way. If in your application you want to be able to view polygons from both sides, it is possible
to change this default (using glLightModel() so that each side of each face is colored and shaded
independently of the other. We will assume the default situation.

Surface material properties are specified by glMaterialf() and glMaterialfv().

glMaterialf(GLenum face, GLenum pname, GLfloat param);
glMaterialfv(GLenum face, GLenum pname, const GLfloat *params);

It is possible to color the front and back faces separately. The first argument indicates which
face we are coloring (such as GL FRONT, GL BACK, or GL FRONT AND BACK). The second
argument indicates the parameter name (such as GL EMISSION, GL AMBIENT, GL DIFFUSE,
GL AMBIENT AND DIFFUSE, GL SPECULAR, GL SHININESS). The last parameter is the value
(either scalar or vector). See the OpenGL documentation for more information.

Typical drawing with lighting
GLfloat color[] = {0.0, 0.0, 1.0, 1.0}; // blue
GLfloat white[] = {1.0, 1.0, 1.0, 1.0}; // white

// set object colors
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, color);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 100);

glPushMatrix();
glTranslatef(...); // your transformations
glRotatef(...);
glBegin(GL_POLYGON); // draw your shape

glNormal3f(...); glVertex(...); // remember to add normals
glNormal3f(...); glVertex(...);
glNormal3f(...); glVertex(...);

glEnd();
glPopMatrix();

Recall from the Phong model that each surface is associated with a single color and various
coefficients are provided to determine the strength of each type of reflection: emission, ambi-
ent, diffuse, and specular. In OpenGL, these two elements are combined into a single vector
given as an RGB or RGBA value. For example, in the traditional Phong model, a red object
might have a RGB color of (1, 0, 0) and a diffuse coefficient of 0.5. In OpenGL, you would just
set the diffuse material to (0.5, 0, 0). This allows objects to reflect different colors of ambient
and diffuse light (although I know of no physical situation in which this arises).

Other options: You may want to enable a number of GL options using glEnable(). This procedure
takes a single argument, which is the name of the option. To turn each option off, you can
use glDisable(). These optional include:

Lecture Notes 75 CMSC 427

Figure 9: Top: Colored Phong-shaded spheres with edge lines and highlights. Bottom: Colored spheres shaded with hue and luminance
shift, including edge lines and highlights. Note: In the first Phong shaded sphere (violet), the edge lines disappear, but are visible in the
corresponding hue and luminance shaded violet sphere. In the last Phong shaded sphere (white), the highlight vanishes, but is noticed in the
corresponding hue and luminance shaded white sphere below it. The spheres in the second row also retain their “color name”.

Figure 10: Left to Right: a) Phong shaded object. b) New metal-shaded object without edge lines. c) New metal-shaded object with edge
lines. d) New metal-shaded object with a cool-to-warm shift.

Figure 11: Left to Right: a) Phong model for colored object. b) New shading model with highlights, cool-to-warm hue shift, and without
edge lines. c) New model using edge lines, highlights, and cool-to-warm hue shift. d) Approximation using conventional Phong shading, two
colored lights, and edge lines.

Figure 9: Top: Colored Phong-shaded spheres with edge lines and highlights. Bottom: Colored spheres shaded with hue and luminance
shift, including edge lines and highlights. Note: In the first Phong shaded sphere (violet), the edge lines disappear, but are visible in the
corresponding hue and luminance shaded violet sphere. In the last Phong shaded sphere (white), the highlight vanishes, but is noticed in the
corresponding hue and luminance shaded white sphere below it. The spheres in the second row also retain their “color name”.

Figure 10: Left to Right: a) Phong shaded object. b) New metal-shaded object without edge lines. c) New metal-shaded object with edge
lines. d) New metal-shaded object with a cool-to-warm shift.

Figure 11: Left to Right: a) Phong model for colored object. b) New shading model with highlights, cool-to-warm hue shift, and without
edge lines. c) New model using edge lines, highlights, and cool-to-warm hue shift. d) Approximation using conventional Phong shading, two
colored lights, and edge lines.

