CS-I84: Computer Graphics

Lecture \#4: 2D Transformations

Prof. James O'Brien
University of California, Berkeley

Today

- 2D Transformations

- "Primitive" Operations
- Scale, Rotate, Shear, Flip, Translate
- Homogenous Coordinates
- SVD
- Start thinking about rotations...

Introduction

- Transformation:

An operation that changes one configuration into another

- For images, shapes, etc.

A geometric transformation maps positions that define the object to other positions

Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Original

Nonuniform Scale

Mapping Function

$$
f(x)=x \text { in old image }
$$

$$
c(x)=[195,120,58]
$$

$$
c^{\prime} x=c(f(x))
$$

Linear -vs- Nonlinear

Nonlinear (swirl)
Linear (shear)

Geometric -vs- Color Space

Linear Geometric
(flip)

Instancing

M.C. Escher, from Ghostscript 8.0 Distribution

Instancing

- Reuse geometric descriptions
- Saves memory

Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation

Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

Linear is Linear

- Composing two linear function is still linear - Transform polygon by transforming vertices

$$
\begin{gathered}
f(x)=a+b x \quad g(f)=c+d f \\
g(x)=c+d f(x)=c+a d+b d x \\
g(x)=a^{\prime}+b^{\prime} x
\end{gathered}
$$

Points in Space

- Represent point in space by vector in R^{n}
- Relative to some origin!
- Relative to some coordinate axes!
- Later we'll add something extra...

Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!

Rotate

Translate

Scale

Shear -- not really "basic"

Linear Functions in 2D

$$
\begin{gathered}
x^{\prime}=f(x, y)=c_{1}+c_{2} x+c_{3} y \\
y^{\prime}=f(x, y)=d_{1}+d_{2} x+d_{3} y \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]+\left[\begin{array}{l}
M_{x x} M_{x y} \\
M_{y x} \\
M_{y y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\mathbf{x}^{\prime}=\mathbf{t}+\mathbf{M} \cdot \mathbf{x}
\end{gathered}
$$

Rotations

$$
\mathbf{p}^{\prime}=\left[\begin{array}{cc}
\operatorname{Cos}(\theta) & -\operatorname{Sin}(\theta) \\
\operatorname{Sin}(\theta) & \operatorname{Cos}(\theta)
\end{array}\right] \mathbf{p}
$$

Rotate

Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don't be different...
- Note:
- rotate by zero degrees give identity
- rotations are modulo 360 (or 2π)

Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
- $\operatorname{Det}(\mathbf{R})=1 \neq-1$
- In 2D rotations commute...
- But in 3D they won't!

Scales

$$
\mathbf{p}^{\prime}=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \mathbf{p}
$$

Scale

Scales

- Diagonal matrices

- Diagonal parts are scale in X and scale in Y directions
- Negative values flip
- Two negatives make a positive (180 deg. rotation)
- Really, axis-aligned scales

Not axis-aligned...

Shears

Shears

- Shears are not really primitive transforms
- Related to non-axis-aligned scales
- More shortly.....

Translation

- This is the not-so-useful way:

$$
\mathbf{p}^{\prime}=\mathbf{p}+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

Translate

Note that its not like the others.

Arbitrary Matrices

- For everything but translations we have:

$$
\mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}
$$

- Soon, translations will be assimilated as well
- What does an arbitrary matrix mean?

Singular Value Decomposition

- For any matrix, A, we can write SVD:

$$
\mathbf{A}=\mathbf{Q S R}^{\top}
$$

where \mathbf{Q} and \mathbf{R} are orthonormal and \mathbf{S} is diagonal

- Can also write Polar Decomposition
where \mathbf{Q} is still orthonormal

Decomposing Matrices

- We can force \mathbf{Q} and \mathbf{R} to have Det=1 so they are rotations
- Any matrix is now:
- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A} \mathbf{p}
$$

"Apply \mathbf{A} to \mathbf{p} and then apply \mathbf{B} to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathfrak{W}+\mathbf{B} \mathbf{t}=\mathbf{C p}+\mathbf{u}
$$

Composition

Transformations built up from others

SVD builds from scale and rotations

Also build other ways
i.e. 45 deg rotation built from shears

Homogeneous Coordiantes

- Move to one higher dimensional space
- Append a 1 at the end of the vectors

$$
\mathbf{p}=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] \quad \tilde{\mathbf{p}}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

- For directions the extra coordinate is a zero

Homogeneous Translation

$$
\begin{gathered}
\widetilde{\mathbf{p}}^{\prime}=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right] \\
\widetilde{\mathbf{p}}=\widetilde{\mathbf{A}} \widetilde{\mathbf{p}}
\end{gathered}
$$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

$$
\tilde{\mathbf{A}}=\left[\begin{array}{cc}
\mathbf{A} & 0 \\
0 & 0
\end{array} 1\right]
$$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

- Rotations and scales always about the origin
- How to rotate/scale about another point?

-vs-

Rotate About Arb. Point

- Step I:Translate point to origin

Translate (-C)

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired

Translate (-C)

Rotate (θ)

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was Transate (-C)

Rotate (θ)

Translate (C)
$\widetilde{\mathbf{p}}^{\prime}=\mathbf{- T} \mathbf{R T} \tilde{\mathbf{p}}=\mathbf{A} \tilde{\mathbf{p}}$
Don't negate the $1 . .$.

Scale About Arb.Axis

- Diagonal matrices scale about coordinate axes only:

Not axis-aligned

Scale About Arb.Axis

- Step I:Translate axis to origin

Scale About Arb.Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4\&5: Undo 2 and I (reverse order)

Order Matters!

- The order that matrices appear in matters

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B A}
$$

- Some special cases work, but they are special
- But matrices are associative

$$
(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})
$$

- Think about efficiency when you have many points to transform...

Matrix Inverses

- In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:
- Translation: negate t_{x} and t_{y}
- Rotation: transpose
- Scale: invert diagonal (axis-aligned scales)
- Others:
- Invert matrix
- Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the " w " coordinate
- What should we have for $\mathbf{a}-\mathbf{b}$?
- $w=0$
- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense

Somethings Require Care

For example normals do not transform normally

$$
\mathbf{M}(\mathbf{a} \times \mathbf{b}) \neq(\mathbf{M a}) \times(\mathbf{M} \mathbf{b})
$$

Use inverse transpose of the matrix for normals.
See text book.

Suggested Reading

- Fundamentals of Computer Graphics by Pete Shirley
- Chapter 5
- And re-read chapter 4 if your linear algebra is rusty!

CS-I84: Computer Graphics

Lecture \#5: 3D Transformations and Rotations

Prof. James O'Brien

University of California, Berkeley

Today

- Transformations in 3D
- Rotations
- Matrices
- Euler angles
- Exponential maps
- Quaternions

3D Transformations

- Generally, the extension from 2D to 3D is straightforward
- Vectors get longer by one
- Matrices get extra column and row
- SVD still works the same way
- Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

$$
\begin{gathered}
\tilde{\mathbf{A}}=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \\
\tilde{\mathbf{A}}=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

For 2D

For 3D

Scales

$$
\begin{gathered}
\tilde{\mathbf{A}}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \\
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

For 2D

For 3D
(Axis-aligned!)

Shears

$$
\tilde{\mathbf{A}}=\left[\begin{array}{ccc}
1 & h_{x y} & 0 \\
h_{y x} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

For 2D

For 3D
(Axis-aligned!)

Shears

$\left[\begin{array}{cccc}1 & h_{x y} & h_{x z} & 0 \\ h_{y x} & 1 & h_{y z} & 0 \\ h_{z y} & h_{z y} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Shears y into x

Rotations

- 3D Rotations fundamentally more complex than in 2D
- 2D: amount of rotation
- 3D: amount and axis of rotation
$-v s$ -

3D

Rotations

- Rotations still orthonormal
- $\operatorname{Det}(\mathbf{R})=1 \neq-1$
- Preserve lengths and distance to origin
- 3D rotations DO NOT COMMUTE!
- Right-hand rule
- Unique matrices

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\mathbf{R}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: looks same as $\tilde{\mathbf{R}}$

Axis-aligned 3D Rotations

$\mathbf{R}_{x}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right]$
$\mathbf{R}_{y}=\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right]$
$\mathbf{R}_{2}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
" Z is in your face"

Axis-aligned 3D Rotations

$$
\mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Also right handed "Zup"

$$
\mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

$$
\mathbf{R}_{2}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Axis-aligned 3D Rotations

- Also known as "direction-cosine" matrices

$$
\begin{gathered}
\mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
\mathbf{R}_{2}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Arbitrary Rotations

- Can be built from axis-aligned matrices:

$$
\mathbf{R}=\mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}
$$

- Result due to Euler... hence called

Euler Angles

- Easy to store in vector $\mathbf{R}=\operatorname{rot}(x, y, z)$
- But NOT a vector.

Arbitrary Rotations

$\mathbf{R}=\mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$

Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
- Reverse of each other

Exponential Maps

- Direct representation of arbitrary rotation - AKA: axis-angle, angular displacement vector
- Rotate θ degrees about some axis
- Encode θ by length of vector

$$
\theta=|\mathbf{r}|
$$

Exponential Maps

- Given vector \mathbf{r}, how to get matrix \mathbf{R}
- Method from text:
I. rotate about x axis to put \mathbf{r} into the $x-y$ plane

2. rotate about z axis align \mathbf{r} with the x axis
3. rotate θ degrees about x axis
4. undo \#2 and then \#I
5. composite together

Exponential Maps

- Vector expressing a point has two parts
- $\mathbf{X}_{\|}$does not change
- \mathbf{X}_{\perp} rotates like a 2D point

Exponential Maps

Exponential Maps

- Rodriguez Formula

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \mathbf{x}) \\
& \quad+\sin (\theta)(\hat{\mathbf{r}} \times \mathbf{x}) \\
& \quad-\cos (\theta)(\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \mathbf{x}))
\end{aligned}
$$

Actually a minor variation ...

Exponential Maps

- Building the matrix

$$
\begin{gathered}
\mathbf{x}^{\prime}=\left(\left(\hat{\mathbf{r}} \hat{\mathbf{r}}^{\mathrm{t}}\right)+\sin (\theta)(\hat{\mathbf{r}} \times)-\cos (\theta)(\hat{\mathbf{r}} \times)(\hat{\mathbf{r}} \times)\right) \mathbf{x} \\
(\hat{\mathbf{r}} \times)=\left[\begin{array}{ccc}
0 & -\hat{r}_{z} & \hat{r}_{y} \\
\hat{r}_{z} & 0 & -\hat{r}_{x} \\
-\hat{r}_{y} & \hat{r}_{x} & 0
\end{array}\right]
\end{gathered}
$$

Antisymmetric matrix
$(\mathbf{a} \times) \mathbf{b}=\mathbf{a} \times \mathbf{b}$
Easy to verify by expansion

Exponential Maps

- Allows tumbling
- No gimbal-lock!
- Orientations are space within π-radius ball
- Nearly unique representation
- Singularities on shells at 2π
- Nice for interpolation

Exponential Maps

- Why exponential?
- Recall series expansion of e^{x}

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Exponential Maps

- Why exponential?
- Recall series expansion of e^{x}
- Euler: what happens if you put in $i \theta$ for x

$$
\begin{gathered}
e^{i \theta}=1+\frac{i \theta}{1!}+\frac{-\theta^{2}}{2!}+\frac{-i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\cdots \\
=\left(1+\frac{-\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots\right)+i\left(\frac{\theta}{1!}+\frac{-\theta^{3}}{3!}+\cdots\right) \\
=\cos (\theta)+i \sin (\theta)
\end{gathered}
$$

Exponential Maps

- Why exponential?

$$
e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{(\hat{\mathbf{r}} \times)^{3} \theta^{3}}{3!}+\frac{(\hat{\mathbf{r}} \times)^{4} \theta^{4}}{4!}+\cdots
$$

$$
\text { But notice that: }(\hat{\mathbf{r}} \times)^{3}=-(\hat{\mathbf{r}} \times)
$$

$$
e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots
$$

Exponential Maps

$$
\begin{gathered}
e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-\left(\hat{\mathbf{r}} \times \theta^{3}\right.}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots \\
e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times)\left(\frac{\theta}{1!}-\frac{\theta^{3}}{3!}+\cdots\right)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}\left(+\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right) \\
e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times) \sin (\theta)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}(1-\cos (\theta))
\end{gathered}
$$

Quaternions

- More popular than exponential maps
- Natural extension of $e^{i \theta}=\cos (\theta)+i \sin (\theta)$
- Due to Hamilton (I843)
- Interesting history
- Involves "hermaphroditic monsters"

Quaternions

- Uber-Complex Numbers

$$
\begin{gathered}
q=\left(z_{1}, z_{2}, z_{3}, s\right)=(\mathbf{z}, s) \\
q=i z_{1}+j z_{2}+k z_{3}+s \\
i^{2}=j^{2}=k^{2}=-1
\end{gathered} \begin{array}{ll}
i j=k & j i=-k \\
j k=i & k j=-i \\
k i=j & i k=-j
\end{array}
$$

Quaternions

- Multiplication natural consequence of defn.

$$
\mathrm{q} \cdot \mathrm{p}=\left(\mathbf{z}_{q} s_{p}+\mathbf{z}_{p} s_{q}+\mathbf{z}_{p} \times \mathbf{z}_{q}, s_{p} s_{q}-\mathbf{z}_{p} \cdot \mathbf{z}_{q}\right)
$$

- Conjugate

$$
\mathrm{q}^{*}=(-\mathbf{z}, s)
$$

- Magnitude

$$
\|q\|^{2}=\mathbf{z} \cdot \mathbf{z}+s^{2}=q \cdot q^{*}
$$

Quaternions

- Vectors as quaternions

$$
\mathrm{v}=(\mathbf{v}, 0)
$$

- Rotations as quaternions

$$
r=\left(\hat{\mathbf{r}} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right)
$$

- Rotating a vector

$$
x^{\prime}=r \cdot x \cdot r^{*}<\text { Compare to Exp. Map }
$$

- Composing rotations

$$
r=r_{1} \cdot r_{2}
$$

Quaternions

- No tumbling
- No gimbal-lock
- Orientations are "double unique"
- Surface of a 3-sphere in 4D $\|r\|=1$
- Nice for interpolation

Interpolation

Rotation Matrices

- Eigen system
- One real eigenvalue
- Real axis is axis of rotation
- Imaginary values are 2D rotation as complex number
- Logarithmic formula

$$
\begin{gathered}
(\hat{\mathbf{r}} \times)=\ln (\mathbf{R})=\frac{\theta}{2 \sin \theta}\left(\mathbf{R}-\mathbf{R}^{\top}\right) \\
\theta=\cos ^{-1}\left(\frac{\operatorname{Tr}(\mathbf{R})-1}{2}\right)
\end{gathered}
$$

Similar formulae as for exponential... ${ }^{\text {si }}$

Rotation Matrices

- Consider:

$$
\mathbf{R I}=\left[\begin{array}{lll}
r_{x x} & r_{x y} & r_{x z} \\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Columns are coordinate axes after transformation (true for general matrices)
- Rows are original axes in original system (not true for general matrices)

Note:

- Rotation stuff in the book is a bit weak... luckily you have these nice slides!

CS-I84: Computer Graphics

Lecture \#8: Projection

Prof. James O'Brien

University of California, Berkeley

Today

- Windowing and Viewing Transformations
- Windows and viewports
- Orthographic projection
- Perspective projection

Screen Space

- Monitor has some number of pixels
- e.g. 1024×768
- Some sub-region used for given program
- You call it a window
- Let's call it a viewport instead

Screen Space

- May not really be a "screen"
- Image file
- Printer
- Other
- Little pixel details
- Sometimes odd
- Upside down
- Hexagonal

Screen Space

- Viewport is somewhere on screen
- You probably don't care where
- Window System likely manages this detail
- Sometimes you care exactly where
- Viewport has a size in pixels
- Sometimes you care (images, text, etc.)
- Sometimes you don't (using high-level library)

Screen Space

Screen Space

Canonical View Space

- Canonical view region
- 2D: $[-1,-1]$ to $[+1,+1]$

$x=0.0, y=0.0$
$-1,-1$

Canonical View Space

- Canonical view region - 2D: $[-1,-1]$ to $[+1,+1]$

From Shirley textbook.
(Image coordinates are up-side-down.)

$$
\left[\begin{array}{l}
i \\
j \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\
0 & -\frac{n_{y}}{2} & \frac{n_{y}-1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Canonical View Space

- Canonical view region

$$
\text { - } 2 \mathrm{D}:[-1,-1] \text { to }[+1,+1]
$$

- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

Canonical View Space

World Coordinates
(Meters)

Canonical
Screen Space
(Pixels)

Note distortion issues...

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear
- Orthographic Many special cases in books just
- Perspective
- Nonlinear

Orthographic is special case of perspective...

Perspective Projections

Linear Projection

- Projection onto a_planar surface
- Projection directions either
- Converge to a point
- Are parallel (converge at infinity)

Linear Projection

- A 2D view

Perspective

Orthographic

Linear Projection

Orthographic

Perspective

Linear Projection

Orthographic

Perspective

Linear Projection

- A 2D view

Perspective

Note how different things can be seen

Parallel lines "meet" at infinity

Orthographic

Orthographic Projection

- No foreshortening
- Parallel lines stay parallel
- Poor depth cues

Canonical View Space

- Canonical view region
- 3D: $[-1,-1,-1]$ to $[+1,+1,+1]$
- Assume looking down - Z axis
- Recall that " Z is in your face"

Orthographic Projection

- Convert arbitrary view volume to canonical

Orthographic Projection

Origin
*Assume up is perpendicular to view.

Orthographic Projection

- Step I: translate center to origin

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $-\mathbf{Z}$ and up to $+\mathbf{Y}$

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $-\mathbf{Z}$ and up to $+\mathbf{Y}$
- Step 3: center view volume

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size

$$
\begin{aligned}
& \mathbf{M}=\underline{\mathbf{S} \cdot \mathbf{T}_{2} \cdot \mathbf{R} \cdot \mathbf{T}_{1}} \\
& \mathbf{M}=\mathbf{M}_{o} \cdot \mathbf{M}_{v}
\end{aligned}
$$

Perspective Projection

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't - Lines still look like lines
- Z ordering preserved (where we care)

Perspective Projection

Pinhole a.k.a center of projection

Perspective Projection

Foreshortening: distant objects appear smaller

Perspective Projection

- Vanishing points
- Depend on the scene
- Not intrinsic to camera

"One point perspective"

Perspective Projection

- Vanishing points
- Depend on the scene
- Nor intrinsic to camera

Perspective Projection

- Vanishing points
- Depend on the scene
- Not intrinsic to camera

"Three point perspective"

Perspective Projection

Perspective Projection

Perspective Projection

- Step I:Translate center to origin

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{i+f}{i} & f \\
0 & 0 & \frac{-1}{i} & 0
\end{array}\right]
$$

Perspective Projection

- Step 4: Perspective
- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$
- Points at $z=0$ goto $z= \pm \infty$
- Points at $z=-\infty$ goto $z=-(i+f)$

- x and y values divided by $-z / i$
- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{i+f}{i} & f \\
0 & 0 & \frac{-1}{i} & 0
\end{array}\right]
$$

Perspective Projection

Perspective Projection

Perspective Projection

Perspective Projection

Perspective Projection

Perspective Projection

Perspective Projection

When we also divide z points must remain on straight lines

Perspective Projection

Perspective Projection

- Step I:Translate center to orange
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

Perspective Projection

- Step I:Translate center to orange
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

Perspective Projection

- There are other ways to set up the projection matrix
- View plane at $z=0$ zero
- Looking down another axis
- etc...
- Functionally equivalent

Vanishing Points

- Consider a ray:

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

Vanishing Points

- Ignore Z part of matrix
- \mathbf{X} and \mathbf{Y} will give location in image plane
- Assume image plane at $z=-i$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\text { whatever } \\
0 & 0 & -1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Vanishing Points

$$
\begin{gathered}
{\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z
\end{array}\right]} \\
{\left[\begin{array}{l}
I_{x} / I_{w} \\
I_{y} / I_{w}
\end{array}\right]=\left[\begin{array}{l}
-x / z \\
-y / z
\end{array}\right]}
\end{gathered}
$$

Vanishing Points

- Assume $d_{z}=-1$

$$
\left[\begin{array}{l}
I_{x} / I_{w} \\
I_{y} / I_{w}
\end{array}\right]=\left[\begin{array}{l}
-x / z \\
-y / z
\end{array}\right]=\left[\begin{array}{l}
\frac{p_{x}+t d_{x}}{-p_{z}+t} \\
\frac{p_{y}+t d_{y}}{-p_{z}+t}
\end{array}\right]
$$

$$
\operatorname{Lim}_{t \rightarrow \pm \infty}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
$$

Vanishing Points

$$
\operatorname{Lim}_{t \rightarrow \pm \infty}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
$$

- All lines in direction d converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- Lines parallel to image plane $\left(d_{z}=0\right)$ vanish at infinity

What's a horizon?

Perspective Tricks

Right Looks Wrong (Sometimes)

Right Looks Wrong (Sometimes)

Strangeness

Ray Picking

- Pick object by picking point on screen

- Compute ray from pixel coordinates.

Ray Picking

- Transform from World to Screen is:

$$
\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{z} \\
I_{w}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
W_{x} \\
W_{y} \\
W_{z} \\
W_{w}
\end{array}\right]
$$

- Inverse:

$$
\left[\begin{array}{l}
W_{x} \\
W_{y} \\
W_{z} \\
W_{w}
\end{array}\right]=\mathbf{M}^{-1}\left[\begin{array}{c}
I_{x} \\
I_{y} \\
I_{z} \\
I_{w}
\end{array}\right]
$$

- What \mathbf{Z} value?

Ray Picking

- Recall that:
- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$
$\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}$
$\mathbf{r}(t)=\mathbf{a}_{w}+t\left(\mathbf{b}_{w}-\mathbf{a}_{w}\right)$

$$
\mathbf{a}_{s}=\left[s_{x}, s_{y},-i\right]
$$

Depends on screen details, YMMV General idea should translate...

$$
\mathbf{b}_{s}=\left[s_{x}, s_{y},-f\right]
$$

Depth Distortion

- Recall depth distortion from perspective
- Interpolating in screen space different than in world
- Ok, for shading (mostly)
- Bad for texture

Half way in world space

Screen

Half way in screen space

Depth Distortion

Depth Distortion

We know the S_{i}, P_{i}, and b_{i}, but not the a_{i}.

Depth Distortion

$$
X=Q / h=\left(\sum_{i} P_{i} a_{i}\right) /\left(\sum_{j} h_{j} a_{j}\right)
$$

Depth Distortion

Depth Distortion

Depth Distortion

Independent of given vertex locations.

$$
\begin{aligned}
\sum_{i} P_{i} b_{i} / h_{i} & =\left(\sum_{i} P_{i} a_{i}\right) /\left(\sum_{j} h_{j} a_{j}\right) \\
b_{i} / h_{i} & =a_{i} /\left(\sum_{j} h_{j} a_{j}\right) \forall i
\end{aligned}
$$

Depth Distortion

$$
b_{i} / h_{i}=a_{i} /\left(\sum_{j} h_{j} a_{j}\right) \quad \forall i
$$

Linear equations in the a_{i}.

$$
\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i}-a_{i}=0
$$

Depth Distortion

$S_{1}=P_{1} / h_{1}$

Linear equations in the a_{i}.

$$
\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i}-a_{i}=0 \quad \forall i
$$

Not invertible so add some extra constraints.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}=1
$$

Depth Distortion

For a line:

$$
a_{1}=h_{2} b_{i} /\left(b_{1} h_{2}+h_{1} b_{2}\right)
$$

For a triangle: $a_{1}=h_{2} h_{3} b_{1} /\left(h_{2} h_{3} b_{1}+h_{1} h_{3} b_{2}+h_{1} h_{2} b_{3}\right)$
Obvious Permutations for other coefficients.

