CS-184: Computer Graphics

Lecture #4:2D Transformations

Prof. James O'Brien University of California, Berkeley

V2008-F-04-1.0

Today

- 2D Transformations
 "Primitive" Operations
 Scale, Rotate, Shear, Flip, Translate
 Homogenous Coordinates
 SVD
 - Start thinking about rotations...

Introduction

• Transformation:

An operation that changes one configuration into another

• For images, shapes, etc.

A geometric transformation maps positions that define the object to other positions

Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Original

Uniform Scale

Rotation

Nonuniform Scale

Mapping Function

f(x) = x in old image

c(x) = [195, 120, 58]

c'x = c(f(x))

5

Linear -vs- Nonlinear

Nonlinear (swirl)

Linear (shear)

Geometric -vs- Color Space

Color Space Transform (edge finding)

Linear Geometric (flip)

Instancing

RHW

Instancing

Reuse geometric descriptions
Saves memory

Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation

Linear is Linear

Composing two linear function is still linear
Transform polygon by transforming vertices

Linear is Linear

Composing two linear function is still linear
 Transform polygon by transforming vertices

$$f(x) = a + bx \qquad g(f) = c + df$$

g(x) = c + df(x) = c + ad + bdx

g(x) = a' + b'x

Points in Space

- Represent point in space by vector in R^n
 - Relative to some origin!
 - Relative to some coordinate axes!
- Later we'll add something extra...

Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!

Rotate

Scale

Translate

Shear -- not really "basic"

A. M. FOTMONISOTOOL

Linear Functions in 2D

$$x' = f(x, y) = c_1 + c_2 x + c_3 y$$

$$y' = f(x, y) = d_1 + d_2 x + d_3 y$$

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} t_x\\t_y \end{bmatrix} + \begin{bmatrix} M_{xx} & M_{xy}\\M_{yx} & M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x\\y \end{bmatrix}$$

 $\mathbf{x}' = \mathbf{t} + \mathbf{M} \cdot \mathbf{x}$

Rotations

Rotate

Rotations

- Rotations are positive counter-clockwise
 Consistent w/ right-hand rule
 Don't be different...
- Note:
 - rotate by zero degrees give identity • rotations are modulo 360 (or 2π)

Rotations

- Preserve lengths and distance to origin
 Rotation matrices are orthonormal
- $\circ \operatorname{Det}(\mathbf{R}) = 1 \neq -1$
- In 2D rotations commute...
 - But in 3D they won't!

Scales

Aisonopic Alansonopic	
A Unitorth A Annutification	$\mathbf{p'} = \begin{bmatrix} s_x & 0\\ 0 & s_y \end{bmatrix} \mathbf{p}$

Scale

Scales

- Diagonal matrices
 - Diagonal parts are scale in X and scale in Y directions
 - Negative values flip
 - Two negatives make a positive (180 deg. rotation)
 - Really, axis-aligned scales

Shears are not really primitive transforms
Related to non-axis-aligned scales
More shortly.....

Translation

• This is the not-so-useful way:

$$\bigwedge \rightarrow \bigwedge \qquad \mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Translate

Note that its not like the others.

Arbitrary Matrices

• For everything but translations we have: $\mathbf{x}' = \mathbf{A} \cdot \mathbf{x}$

Soon, translations will be assimilated as well

• What does an arbitrary matrix mean?

Singular Value Decomposition

• For any matrix, A, we can write SVD: $A = QSR^{T}$

where Q and R are orthonormal and S is diagonal

• Can also write Polar Decomposition $A = QRSR^T$ where Q is still orthonormal

25

Decomposing Matrices

- We can force Q and R to have Det=1 so they are rotations
- Any matrix is now:
 - Rotation:Rotation:Scale:Rotation
 - See, shear is just a mix of rotations and scales

Composition

Matrix multiplication composites matrices
 p' = BAp

"Apply A to p and then apply B to that result."

$$\mathbf{p'} = \mathbf{B}(\mathbf{A}\mathbf{p}) = (\mathbf{B}\mathbf{A})\mathbf{p} = \mathbf{C}\mathbf{p}$$

Several translations composted to one
Translations still left out...
p'= B(Ap+t) = p + Bt = Cp + u

Composition

Transformations built up from others SVD builds from scale and rotations Also build other ways i.e. 45 deg rotation built from shears

Homogeneous Coordiantes

Move to one higher dimensional space

• Append a 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \widetilde{\mathbf{p}} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

• For directions the extra coordinate is a zero

Homogeneous Translation

 $\widetilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$

 $\widetilde{\mathbf{p}}' = \widetilde{\mathbf{A}}\widetilde{\mathbf{p}}$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

 $\widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

Rotations and scales always about the origin
How to rotate/scale about another point?

-VS-

Rotate About Arb. Point

• Step I: Translate point to origin

Translate (-C)

Rotate About Arb. Point

- Step I: Translate point to origin
- Step 2: Rotate as desired

Translate (-C)

Rotate (θ)

Rotate About Arb. Point

- Step I: Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

Translate (-C)

Rotate (θ)

Translate (C)

Don't negate the 1...

Scale About Arb. Axis

 Diagonal matrices scale about coordinate axes only:

Not axis-aligned

• Step I: Translate axis to origin

- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4&5: Undo 2 and I (reverse order)

Order Matters!

- The order that matrices appear in matters $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B}\mathbf{A}$
- Some special cases work, but they are special
 But matrices are associative
 - $(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$
- Think about efficiency when you have many points to transform...

Matrix Inverses

- \circ In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:
 - Translation: negate t_x and t_y
 - Rotation: transpose
 - Scale: invert diagonal (axis-aligned scales)
- Others:
 - Invert matrix
 - Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the "w" coordinate
- What should we have for $\mathbf{a} \mathbf{b}$?

 $\circ w = 0$

- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense

Somethings Require Care

For example normals do not transform normally $\mathbf{M}(\mathbf{a} \times \mathbf{b}) \neq (\mathbf{M}\mathbf{a}) \times (\mathbf{M}\mathbf{b})$

Use inverse transpose of the matrix for normals. See text book.

Suggested Reading

- Fundamentals of Computer Graphics by Pete Shirley
 - Chapter 5
 - And re-read chapter 4 if your linear algebra is rusty!

CS-184: Computer Graphics

Lecture #5: 3D Transformations and Rotations

> Prof. James O'Brien University of California, Berkeley

> > V2008-F-05-1.0

- Transformations in 3D
 Rotations
 - Matrices
 - Euler angles
 - Exponential maps
 - Quaternions

3D Transformations

- Generally, the extension from 2D to 3D is straightforward
 - Vectors get longer by one
 - Matrices get extra column and row
 - SVD still works the same way
 - Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

 $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$ $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

For 2D

For 3D

Scales $\tilde{\mathbf{A}} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$ For 2D $\tilde{\mathbf{A}} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ For 3D (Axis-aligned!)

50

Shears $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & 0 \\ h_{yx} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ For 2D $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ For 3D (Axis-aligned!)

51

Shears

 $\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Shears y into x

Rotations

 3D Rotations fundamentally more complex than in 2D

-VS-

- 2D: amount of rotation
- 3D: amount and axis of rotation

Rotations

- Rotations still orthonormal
- $\circ \operatorname{Det}(\mathbf{R}) = 1 \neq -1$
- Preserve lengths and distance to origin
 3D rotations DO NOT COMMUTE!
- Right-hand rule
- Unique matrices

 2D rotations implicitly rotate about a third out of plane axis

 2D rotations implicitly rotate about a third out of plane axis

$$\mathbf{R}_{s} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{s} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{s} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{s} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\mathbf{R}_{\hat{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$ Also right handed "Zup" $\mathbf{R}_{g} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$ $\mathbf{R}_{\hat{z}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$

Also known as "direction-cosine" matrices

$$\mathbf{R}_{\hat{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \qquad \mathbf{R}_{\hat{y}} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{\hat{z}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Arbitrary Rotations

• Can be built from axis-aligned matrices: $\mathbf{R} = \mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$

Result due to Euler... hence called Euler Angles
Easy to store in vector **R** = rot(x, y, z)
But NOT a vector.

Arbitrary Rotations

Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
 - Reverse of each other

Direct representation of arbitrary rotation
AKA: axis-angle, angular displacement vector
Rotate θ degrees about some axis
Encode θ by length of vector
θ = |**r**|

- \circ Given vector **r**, how to get matrix **R**
- Method from text:
 - I. rotate about x axis to put \mathbf{r} into the x-y plane
 - 2. rotate about z axis align \mathbf{r} with the x axis
 - 3. rotate θ degrees about x axis
 - 4. undo #2 and then #1
 - 5. composite together

Vector expressing a point has two parts

- $\circ \mathbf{X}_{\parallel}$ does not change
- $\circ \mathbf{X}_{|}$ rotates like a 2D point

Rodriguez Formula $\mathbf{x}' = \hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \mathbf{x}) + \sin(\theta)(\hat{\mathbf{r}} \times \mathbf{x})$ $-\cos(\theta)(\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{x}))$ Linear in x

Actually a minor variation ...

Building the matrix

$$\mathbf{x}' = ((\hat{\mathbf{r}}\hat{\mathbf{r}}^{t}) + \sin(\theta)(\hat{\mathbf{r}}\times) - \cos(\theta)(\hat{\mathbf{r}}\times)(\hat{\mathbf{r}}\times))\mathbf{x}$$

$$(\hat{\mathbf{r}} \times) = \begin{bmatrix} 0 & -\hat{r}_z & \hat{r}_y \\ \hat{r}_z & 0 & -\hat{r}_x \\ -\hat{r}_y & \hat{r}_x & 0 \end{bmatrix}$$

Antisymmetric matrix $(a \times)b = a \times b$ Easy to verify by expansion

- Allows tumbling
- No gimbal-lock!
- Orientations are space within π-radius ball
- Nearly unique representation
- \circ Singularities on shells at 2π
- Nice for interpolation

- Why exponential?
- Recall series expansion of e^{λ}

- Why exponential? • Recall series expansion of e^x • Euler: what happens if you put in $i\theta$ for x $i\theta = -\theta^2 - i\theta^3 = \theta^4$
- $e^{i\theta} = 1 + \frac{i\theta}{1!} + \frac{-\theta^2}{2!} + \frac{-i\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$ $= \left(1 + \frac{-\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots\right) + i\left(\frac{\theta}{1!} + \frac{-\theta^3}{3!} + \cdots\right)$

 $= \cos(\theta) + i\sin(\theta)$

$$e^{(\hat{\mathbf{r}}\times)\theta} = \mathbf{I} + \frac{(\hat{\mathbf{r}}\times)\theta}{1!} + \frac{(\hat{\mathbf{r}}\times)^2\theta^2}{2!} + \frac{(\hat{\mathbf{r}}\times)^3\theta^3}{3!} + \frac{(\hat{\mathbf{r}}\times)^4\theta^4}{4!} + \cdots$$

But notice that: $(\hat{\mathbf{r}} \times)^3 = -(\hat{\mathbf{r}} \times)$

$$e^{(\hat{\mathbf{r}}\times)\theta} = \mathbf{I} + \frac{(\hat{\mathbf{r}}\times)\theta}{1!} + \frac{(\hat{\mathbf{r}}\times)^2\theta^2}{2!} + \frac{-(\hat{\mathbf{r}}\times)\theta^3}{3!} + \frac{-(\hat{\mathbf{r}}\times)^2\theta^4}{4!} + \cdots$$
Exponential Maps

$$e^{(\hat{\mathbf{r}}\times)\theta} = \mathbf{I} + \frac{(\hat{\mathbf{r}}\times)\theta}{1!} + \frac{(\hat{\mathbf{r}}\times)^2\theta^2}{2!} + \frac{-(\hat{\mathbf{r}}\times)\theta^3}{3!} + \frac{-(\hat{\mathbf{r}}\times)^2\theta^4}{4!} + \cdots$$
$$e^{(\hat{\mathbf{r}}\times)\theta} = (\hat{\mathbf{r}}\times)\left(\frac{\theta}{1!} - \frac{\theta^3}{3!} + \cdots\right) + \mathbf{I} + (\hat{\mathbf{r}}\times)^2\left(+\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \cdots\right)$$

 $e^{(\hat{\mathbf{r}}\times)\theta} = (\hat{\mathbf{r}}\times)\sin(\theta) + \mathbf{I} + (\hat{\mathbf{r}}\times)^2(1-\cos(\theta))$

- More popular than exponential maps
- Natural extension of $e^{i\theta} = \cos(\theta) + i\sin(\theta)$
- Due to Hamilton (1843)
 - Interesting history
 - Involves "hermaphroditic monsters"

Uber-Complex Numbers

q =
$$(z_1, z_2, z_3, s) = (\mathbf{z}, s)$$

q = $iz_1 + jz_2 + kz_3 + s$

$$iJ = k \quad Ji = -k$$
$$iJ = k \quad Ji = -k$$
$$jk = i \quad kj = -i$$
$$ki = j \quad ik = -j$$

 Multiplication natural consequence of defn. $\mathbf{q} \cdot \mathbf{p} = (\mathbf{z}_q s_p + \mathbf{z}_p s_q + \mathbf{z}_p \times \mathbf{z}_q , s_p s_q - \mathbf{z}_p \cdot \mathbf{z}_q)$ Conjugate $q^* = (-\mathbf{Z}, S)$ Magnitude $||\mathbf{q}||^2 = \mathbf{z} \cdot \mathbf{z} + s^2 = \mathbf{q} \cdot \mathbf{q}^*$

• Vectors as quaternions

$$\mathbf{v} = (\mathbf{v}, \mathbf{0})$$

• Rotations as quaternions $\mathbf{r} = (\hat{\mathbf{r}}\sin\frac{\theta}{2},\cos\frac{\theta}{2})$

Rotating a vector

$$x' = r \cdot x \cdot r^*$$
 $r \cdot x \cdot r^*$ Compare to Exp. Map

• Composing rotations $r = r_1 \cdot r_2$

No tumbling
No gimbal-lock
Orientations are "double unique"
Surface of a 3-sphere in 4D ||r|| = 1
Nice for interpolation

Interpolation

Rotation Matrices

• Eigen system

- One real eigenvalue
- Real axis is axis of rotation
- Imaginary values are 2D rotation as complex number
- Logarithmic formula $(\hat{\mathbf{r}} \times) = \ln(\mathbf{R}) = \frac{\theta}{2\sin\theta} (\mathbf{R} - \mathbf{R}^{\mathsf{T}})$ $\theta = \cos^{-1} \left(\frac{\operatorname{Tr}(\mathbf{R}) - 1}{2} \right)$

Similar formulae as for exponential...

Rotation Matrices

• Consider:

$$\mathbf{RI} = \begin{bmatrix} r_{xx} & r_{xy} & r_{xz} \\ r_{yx} & r_{yy} & r_{yz} \\ r_{zx} & r_{zy} & r_{zz} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 Columns are coordinate axes after transformation (true for general matrices)

 Rows are original axes in original system (not true for general matrices)

Rotation stuff in the book is a bit weak...
 luckily you have these nice slides!

CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O'Brien University of California, Berkeley

V2008-F-08-1.0

Windowing and Viewing Transformations

- Windows and viewports
- Orthographic projection
- Perspective projection

- Monitor has some number of pixels
 - e.g. 1024 x 768
- Some sub-region used for given program
 - You call it a window
 - Let's call it a viewport instead

- May not really be a "screen"
 - Image file
 - Printer
 - Other
- Little pixel details
- Sometimes odd
 - Upside down
 - Hexagonal

 Viewport is somewhere on screen You probably don't care where Window System likely manages this detail Sometimes you care exactly where Viewport has a size in pixels • Sometimes you care (images, text, etc.) Sometimes you don't (using high-level library)

Canonical view region

• 2D: [-1,-1] to [+1,+1]

X

Canonical view region 2D: [-1,-1] to [+1,+1]

 $\frac{\overline{2}}{0} \frac{1}{\frac{n_y}{2}} \frac{1}{\frac{n_y-1}{2}}$

From Shirley textbook. (Image coordinates are up-side-down.)

Remove minus for right-side-up

- Canonical view region
 - **2D**: [-1,-1] to [+1,+1]
- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

World Coordinates (Meters) Canonical

Screen Space (Pixels)

Note distortion issues...

Projection

- Process of going from 3D to 2D
 Studies throughout history (e.g. painters)
 Different types of projection
 - Linear
 - Orthographic
 - Perspective
 - Nonlinear

Many special cases in books just one of these two...

Orthographic is special case of perspective...

Perspective Projections

- Projection onto a planar surface
- Projection directions either
 - Converge to a point
 - Are parallel (converge at infinity)

• A 2D view

Orthographic

Perspective

Orthographic

Perspective

Orthographic

Perspective

No foreshortening
Parallel lines stay parallel
Poor depth cues

Canonical view region
3D: [-1,-1,-1] to [+1,+1,+1]
Assume looking down -Z axis
Recall that "Z is in your face"

Convert arbitrary view volume to canonical

• Step I: translate center to origin

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to +Y

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- Z ordering preserved (where we care)

Pinhole a.k.a center of projection

Foreshortening: distant objects appear smaller

- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera

"One point perspective"

- Vanishing points
 - Depend on the scene
 - Nor intrinsic to camera

"Two point perspective"

- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera

115

• Step I: Translate center to origin

- Step I: Translate center to origin
- Step 2: Rotate view to -Z, up to +Y

- Step I: Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis

- Step I: Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective

-7

• Step 4: Perspective

- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f
- Points at z=0 goto $z=\pm\infty$
- Points at $z = -\infty$ goto z = -(i+f)
- x and y values divided by -z/i
- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted

Тор		
Near	Far	
5		
ontalline		
mehorit		
50		
		\rightarrow View vector

- Step I: Translate center to orange
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

- Step I: Translate center to orange
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

$$\mathbf{M} = \mathbf{M}_o \cdot \mathbf{M}_p \cdot \mathbf{M}_v$$

 M_o

 \mathbf{M}_{v}

- There are other ways to set up the projection matrix
 - View plane at z=0 zero
 - Looking down another axis
 - etc...
- Functionally equivalent

• Consider a ray:

$\mathbf{r}(t) = \mathbf{p} + t \, \mathbf{d}$

- Ignore Z part of matrix
- X and Y will give location in image plane
 Assume image plane at z=-i

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \text{whatever} \\ 0 & 0 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x / z \\ -y / z \end{bmatrix}$$

• Assume
$$d_z = -1$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix} = \begin{bmatrix} \frac{p_x + td_x}{-p_z + t} \\ \frac{p_y + td_y}{-p_z + t} \end{bmatrix}$$

$$\operatorname{Lim}_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

$$\operatorname{Lim}_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

- All lines in direction d converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- Lines parallel to image plane ($d_z = 0$) vanish at infinity

What's a horizon?

Perspective Tricks

Right Looks Wrong (Sometimes)

From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995
Right Looks Wrong (Sometimes)

The Ambassadors by Hans Holbein the Younger

Ray Picking

Pick object by picking point on screen

• Compute ray from pixel coordinates.

Ray Picking

Transform from World to Screen is:

$$\begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix} = \mathbf{M} \begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix}$$

• Inverse:

$$\begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix}$$

• What Z value?

Ray Picking

• Recall that:

- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f

Depends on screen details, YMMV General idea should translate...

 $\mathbf{b}_{s} = [s_{x}, s_{y}, -f]$

 $\mathbf{a}_s = [s_x, s_y, -i]$

$$\mathbf{r}(t) = \mathbf{p} + t \, \mathbf{d}$$
$$\mathbf{r}(t) = \mathbf{a}_w + t (\mathbf{b}_w - \mathbf{a}_w)$$

- Recall depth distortion from perspective
 - Interpolating in screen space different than in world
 - Ok, for shading (mostly)
 - Bad for texture

World

Half way in screen space

We know the S_i , P_i , and b_i , but not the a_i .

Independent of given vertex locations.

$$\sum_{i}^{i} P_{i}b_{i}/h_{i} = \left(\sum_{i}^{i} P_{i}a_{i}\right) / \left(\sum_{j}^{i} h_{j}a_{j}\right)$$
$$b_{i}/h_{i} = a_{i} / \left(\sum_{j}^{i} h_{j}a_{j}\right) \quad \forall i$$

Linear equations in the a_i .

$$\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i} - a_{i} = 0 \quad \forall i$$

 $\sum_{i} a_i = \sum_{i} b_i = 1$

Not invertible so add some extra constraints.

For a line: $a_1 = h_2 b_i / (b_1 h_2 + h_1 b_2)$

For a triangle: $a_1 = h_2 h_3 b_1 / (h_2 h_3 b_1 + h_1 h_3 b_2 + h_1 h_2 b_3)$ Obvious Permutations for other coefficients.